Use of model cell membranes to demonstrate templated binding of vancomycin group antibiotics

(Note: The full text of this document is currently only available in the PDF Version )

Andrew C. Try, Gary J. Sharman, Robert J. Dancer, Ben Bardsley, Richard M. H. Entress and Dudley H. Williams


Abstract

In this paper we demonstrate the importance of binding geometry and dimerisation at the surface of model cell membranes in the mode of action of the clinically important glycopeptide antibiotics. This has been achieved through the use of model cell membranes (micelles and vesicles) to which cell wall analogues are anchored via a hydrophobic decanoyl chain. A number of –D-Ala-terminating cell wall analogues, ranging from two to six residues in length, have been used. Dipeptide, pentapeptide and hexapeptide display enhanced binding to the antibiotic at the model cell surface, but tripeptide and tetrapeptide do not. The possible implications of the observed binding geometries for bacterial systems are discussed.


References

  1. A. N. Chatterjee and H. R. Perkins, Biochem. Biophys. Res. Commun., 1966, 24, 489 CrossRef CAS.
  2. D. C. Jordan and P. E. Reynolds, in Antibiotics, ed. J. W. Corcoran and F. E. Hahn, Springer-Verlag, Berlin, 1974, vol. III Search PubMed.
  3. J. R. Kalman and D. H. Williams, J. Am. Chem. Soc., 1980, 102, 906 CrossRef CAS.
  4. D. H. Williams, M. P. Williamson, D. W. Butcher and S. J. Hammond, J. Am. Chem. Soc., 1983, 105, 1332 CrossRef CAS.
  5. J. C. J. Barna, D. H. Williams and M. P. Williamson, J. Chem. Soc., Chem. Commun., 1985, 254 RSC.
  6. J. P. Mackay, U. Gerhard, D. A. Beauregard, R. A. Maplestone and D. H. Williams, J. Am. Chem. Soc., 1994, 116, 4573 CrossRef CAS.
  7. J. P. Mackay, U. Gerhard, D. A. Beauregard, M. S. Westwell, M. S. Searle and D. H. Williams, J. Am. Chem. Soc., 1994, 116, 4581 CrossRef CAS.
  8. D. A. Beauregard, D. H. Williams, M. N. Gwynn and D. J. C. Knowles, Antimicrob. Agents Chemother., 1995, 39, 781 CAS.
  9. M. S. Westwell, U. Gerhard and D. H. Williams, J. Antibiot., 1995, 48, 1292 CAS.
  10. J. M. Ghuysen, in Topics in Antibiotic Chemistry, ed. P. G. Sammes, Ellis Horwood, Chichester, 1980, vol. 5, p. 31 Search PubMed.
  11. M. S. Westwell, B. Bardsley, R. J. Dancer, A. C. Try and D. H. Williams, Chem. Commun., 1996, 589 RSC.
  12. P. Groves, M. S. Searle, M. S. Westwell and D. H. Williams, J. Chem. Soc., Chem. Commun., 1994, 1519 RSC.
  13. G. J. Sharman, M. S. Searle, B. Benhamu, P. Groves and D. H. Williams, Angew. Chem., Int. Ed. Engl., 1995, 34, 1483 CrossRef CAS.
  14. M. S. Searle, G. J. Sharman, P. Groves, B. Benhamu, D. A. Beauregard, M. S. Westwell, R. J. Dancer, A. J. Maguire, A. C. Try and D. H. Williams, J. Chem. Soc., Perkin Trans. 1, 1996, 2781 RSC.
  15. M. Nieto and H. R. Perkins, Biochem. J., 1971, 123, 780.
  16. J. C. J. Barna, D. H. Williams, D. J. M. Stone, T.-W. C. Leung and D. M. Doddrell, J. Am. Chem. Soc., 1984, 106, 4895 CrossRef CAS.
  17. R. D. G. Cooper, N. J. Snyder, M. J. Zweifel., M. A. Staszak, S. C. Wilkie, T. I. Nicas, D. L. Mullen, T. F. Butler, M. J. Rodriguez, B. E. Huff and R. C. Thompson, J. Antibiot., 1996, 49, 575 CAS.
  18. W. G. Prowse, A. D. Kline, M. A. Skelton and R. J. Loncharich, Biochemistry, 1995, 34, 9632 CrossRef CAS.
  19. S. W. Fesik, T. J. O'Donnell, R. T. Gampe and E. T. Olejniczak, J. Am. Chem. Soc., 1986, 106, 3165 CrossRef.
  20. P. Groves, M. S. Searle, J. P. Mackay and D. H. Williams, Structure, 1994, 2, 747 CrossRef CAS.
  21. P. Groves, M. S. Searle, J. P. Waltho and D. H. Williams, J. Am. Chem. Soc., 1995, 117, 7958 CrossRef CAS.
  22. M. S. Searle, M. S. Westwell and D. H. Williams, J. Chem. Soc., Perkin Trans. 2, 1995, 141 RSC.
  23. M. Piotto, V. Saudek and V. Sklenár, J. Biomol. NMR, 1992, 2, 661 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.