Synthesis and desaturation of monofluorinated fatty acids[hair space]1

(Note: The full text of this document is currently only available in the PDF Version )

Peter H. Buist, Kostas A. Alexopoulos, Behnaz Behrouzian, Brian Dawson and Bruce Black


Abstract

A series of monofluoro C16 and C18 fatty acids have been synthesized and used as mechanistic probes for fatty acid desaturation. Only fluoroolefinic products are obtained when these compounds are processed by an in vivo Saccharomyces cerevisiae ω9 desaturating system as determined by 1H-decoupled 19F NMR and GC–MS analysis. No evidence for fluorohydrin formation has been found when either methyl (R,S)-9- or 10-fluoropalmitate (stearate) 3a,b and 5a,b was incubated with the ω9 desaturase. On desaturation α- and β-fluorine substituent effects (kH/kF) of magnitude 6.2 and 2.4, respectively, have been measured by direct competition experiments between 3a and 3b and between methyl 16-fluoropalmitate 3c and 3b. These results do not support the involvement of discrete hydroxylated and carbocationic intermediates in fatty acid desaturation. Substantial apparent steric effects have been observed for monofluorostearoyl substrates 5c–f bearing a fluorine distal from the site of initial oxidation. In the case of (R,S)-methyl 12-fluorostearate 5f, we show that both enantiomers are desaturated at comparable rates.


References

  1. Preliminary account of part of this work: P. H. Buist, B. Behrouzian, K. A. Alexopoulos, B. Dawson and B. Black, J. Chem. Soc., Chem. Commun., 1996, 2671 Search PubMed.
  2. (a) H. Cook, in Biochemistry of Lipids and Membranes, eds. D. E. Vance and J. E. Vance, The Benjamin Cummings Publishing Co. Ltd., Menlo Park, CA, 1985, pp. 191–203 Search PubMed; (b) R. J. Breslow, Chem. Soc. Rev., 1972, 1, 553 RSC.
  3. (a) B. G. Fox, J. Shanklin, J. Ai, T. Loehr and J. Sanders-Loehr, Biochemistry, 1994, 33, 12 776 CrossRef CAS; (b) J. Shanklin, E. Whittle and B. G. Fox, Biochemistry, 1994, 33, 12 787 CrossRef CAS.
  4. Y. Linquist, W. Huang, G. Schneider and J. Shanklin, Embo J., 1996, 15, 4081 CAS.
  5. (a) P. H. Buist and D. M. Marecak, J. Am. Chem. Soc., 1992, 114, 5073 CrossRef CAS; (b) P. H. Buist and D. M. Marecak, Can. J. Chem., 1994, 72, 176 CAS; (c) P. Buist, D. Marecak, B. Dawson and B. Black, Can. J. Chem., 1996, 74, 453 CAS; (d) P. H. Buist and B. Behrouzian, J. Am. Chem. Soc., 1996, 118, 6295 CrossRef CAS; (e) P. H. Buist, H. G. Dallmann, R. R. Rymerson and P. M. Seigel, Tetrahedron Lett., 1988, 29, 435 CrossRef CAS; (f) P. H. Buist, H. G. Dallmann, R. R. Rymerson, P. M. Seigel and P. Skala, Tetrahedron Lett., 1987, 28, 857 CrossRef CAS.
  6. F. J. van de Loo, P. Broun, S. Turner and C. Somerville, Proc. Natl. Acad. Sci. USA, 1995, 92, 6743 CAS.
  7. (a) P. R. Ortiz de Montellano, Trends Pharmacol. Sci., 1989, 10, 354 CrossRef; (b) J. R. Collins, D. L. Camper and G. H. Loew, J. Am. Chem. Soc., 1991, 113, 2736 CrossRef CAS; (c) E. J. Lawlor, S. W. Elson, S. Holland, R. Cassels, J. E. Hodgson, M. Lloyd, J. E. Baldwin and C. J. Schofield, Tetrahedron, 1994, 50, 8737 CrossRef CAS.
  8. (a) M. Newcomb, F. H. Le Tadic-Biadetti, D. L. Chestney, E. S. Roberts and P. F. Hollenberg, J. Am. Chem. Soc., 1995, 117, 12 085 Search PubMed.
  9. W. J. Middleton, J. Org. Chem., 1975, 40, 574 CrossRef CAS.
  10. A. P. Krapcho, J. R. Larson and J. M. Eldridge, J. Org. Chem., 1977, 42, 3749 CrossRef CAS.
  11. L. D. Metcalfe and A. A. Schmitz, Anal. Chem., 1961, 33, 363 CrossRef CAS.
  12. M. Shimizu and H. Yoshioka, Tetrahedron Lett., 1989, 30, 967 CrossRef CAS.
  13. S. H. Lee and J. Schwartz, J. Am. Chem. Soc., 1986, 108, 2445 CrossRef CAS.
  14. A. G. McInnes, J. A. Walter and J. L. C. Wright, Tetrahedron, 1983, 39, 3515 CrossRef CAS.
  15. (a) H. L. Holland and E. M. Thomas, Can. J. Chem., 1982, 60, 160 CAS and refs. contained therein; (b) T. L. Macdonald, CRC Crit. Rev. Toxic., 1982, 11, 85 Search PubMed.
  16. (a) P. G. Gassman and T. T. Tidwell, Acc. Chem. Res., 1983, 16, 279 CrossRef CAS and refs. contained therein; (b) X. Creary, Chem. Rev., 1991, 91, 1625 CrossRef CAS.
  17. (a) I. K. Stoddart, A. Nechvatal and J. M. Tedder, J. Chem. Soc., Perkin Trans. 2, 1974, 473 RSC; (b) W. K. Busfield, I. D. Grice and I. D. Jenkins, J. Chem. Soc., Perkin Trans. 2, 1994, 1079 RSC.
  18. E. von Rudloff, Can. J. Chem., 1956, 34, 1413.
  19. P. H. Buist and R. Adeney, J. Org. Chem., 1991, 56, 3449 CrossRef CAS.
  20. L. Dasaradhi, D. O'Hagan, M. C. Petty and C. Pearson, J. Chem. Soc., Perkin Trans. 1, 1995, 221 RSC.
  21. M. Schlosser and D. Michel, Tetrahedron, 1996, 52, 99 CrossRef CAS.
  22. P. Strittmatter, L. Spatz, D. Corcoran, M. J. Rogers, B. Setlow and R. Redline, Proc. Natl. Acad. Sci. USA, 1975, 71, 4565.
  23. R. J. Light, W. J. Lennarz and K. Bloch, J. Biol. Chem., 1962, 237, 1793 CAS.
  24. P. H. Buist and J. M. Findlay, Tetrahedron Lett., 1984, 25, 1433 CrossRef CAS.
  25. M. Muehlbacher and C. D. Poulter, J. Org. Chem., 1988, 53, 1026 CrossRef CAS.
  26. A. J. Mancuso, S. L. Huang and D. Swern, J. Org. Chem., 1978, 43, 2480 CrossRef CAS.
  27. S. W. Chaikin and W. G. Brown, J. Am. Chem. Soc., 1949, 71, 122 CrossRef CAS.
  28. N. J. M. Birdsall, Tetrahedron Lett., 1971, 12, 2675 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.