Flash vacuum pyrolysis of stabilised phosphorus ylides. Part 10.1 Generation of 2-methylstyrylalkynes and their thermal cyclisation to 2-alkenylnaphthalenes

(Note: The full text of this document is currently only available in the PDF Version )

R. Alan Aitken, Christine Boeters and John J. Morrison


Abstract

A series of nine 2-methylcinnamoyl phosphorus ylides 7 have been prepared and are found upon FVP at 500 °C to undergo loss of Ph3PO to afford the corresponding styrylalkynes 8 whose fully assigned 13C NMR spectra are presented. FVP of the ylides at 900 °C leads to cyclisation to give substituted naphthalenes 9–18; the mechanism of these reactions may proceed either by initial hydrogen atom loss or an initial [1,7]hydrogen shift, but an alternative route involving an initial [1,3]hydrogen shift has been ruled out by examination of a deuterium labelled analogue. For the α-phenyl ylides 7d and 7i a further cyclisation leads to benzo[c]fluorene derivatives and this process has been extended to a thiophene analogue to give fluoreno[3,4-b]thiophene. The formation of 2-ethylnaphthalene as the main product from the α-methoxycarbonyl ylide 7e is due to a secondary thermal reaction of methyl 2-naphthylacetate which may involve a radical chain reaction featuring, as the propagation step, an unusual homolytic substitution at a methoxy carbon by a 2-naphthylmethyl radical.


References

  1. Part 9, R. A. Aitken and N. Karodia, Liebigs Ann. Recl., 1997, 779 Search PubMed.
  2. R. A. Aitken, C. Boeters and J. J. Morrison, J. Chem. Soc., Perkin Trans. 1, 1994, 2473 RSC.
  3. J. Becker, C. Wentrup, E. Katz and K.-P. Zeller, J. Am. Chem. Soc., 1980, 102, 5110 CrossRef CAS.
  4. Preliminary communication, R. A. Aitken, C. Boeters and J. J. Morrison, Tetrahedron Lett., 1995, 36, 1303 Search PubMed.
  5. D. W. Jones, R. S. Matthews and K. D. Bartle, Spectrochim. Acta, 1972, 28A, 2053 CrossRef.
  6. C. Graebe, Ber. Dtsch. Chem. Ges., 1894, 27, 952 Search PubMed.
  7. M. E. Gurskii, I. D. Gridnev, Yu. V. Il'ichev, A. V. Ignatenko and Yu. N. Bubnov, Angew. Chem., Int. Ed. Eng., 1992, 31, 781 CrossRef; H. Jiao and P. von R. Schleyer, Angew. Chem., Int. Ed. Engl., 1993, 32, 1763 CrossRef.
  8. H. Heimgartner, J. Zsindely, H.-J. Hansen and H. Schmid, Helv. Chim. Acta, 1973, 56, 2924 CrossRef CAS.
  9. R. F. C. Brown and G. L. McMullen, Aust. J. Chem., 1974, 27, 2385 CAS.
  10. M. Koller, M. Karpf and A. S. Dreiding, Helv. Chim. Acta, 1986, 69, 560 CrossRef CAS.
  11. A. I. Meyers, R. J. Himmelsbach and M. Reuman, J. Org. Chem., 1983, 48, 4053 CrossRef CAS.
  12. A. R. Katritzky, G. J. Hitchings, R. W. King and D. W. Zhu, Magn. Reson. Chem., 1991, 29, 2 CAS.
  13. R. A. Aitken and G. Burns, J. Chem. Soc., Perkin Trans. 1, 1994, 2455 RSC.
  14. W. C. Young, Ber. Dtsch. Chem. Ges., 1892, 25, 2102 Search PubMed.
  15. H. W. Gschwend and A. Hamdan, J. Org. Chem., 1975, 40, 2008 CrossRef CAS.
  16. W. Borsche, P. Hofmann and H. Kühn, Liebigs Ann. Chem., 1943, 554, 23 Search PubMed.
  17. G. B. Arrowsmith, G. H. Jeffery and A. I. Vogel, J. Chem. Soc., 1965, 2072 RSC.
  18. R. A. Aitken and J. I. Atherton, J. Chem. Soc., Perkin Trans. 1, 1994, 1281 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.