In vitro biosynthesis of cadinanes by cell-free extracts of cultured cells of Heteroscyphus planus

(Note: The full text of this document is currently only available in the PDF Version )

Kensuke Nabeta, Masaru Fujita, Kaori Komuro, Kinya Katayama and Toshihide Takasawa


Abstract

A cell-free extract from the calli of the liverwort Heteroscyphus planus catalyzes the divalent metal ion-dependent conversion of (2Z, 6E)-farnesyl diphosphate (FPP) into (-)-γ-cadinene and (+)-germacrene D, while it specifically converts (2E, 6E)-FPP into (+)-cubenene and (+)-epicubenol. The 1,3-hydride shift in the formation of (-)-γ-cadinene has been determined by conversion of (2Z, 6E)-[1,1-2H2]-FPP into (-)-γ-cadinene which was shown by GLC–MS and 2H NMR spectroscopy to be labelled at the C-11 position. These findings suggest that (-)-γ-cadinene is directly formed from 2Z, 6E-FPP by intramolecular electrophilic attack of the primary carbocation on the C-10 position of FPP. (+)-Cubenene synthase and (-)-γ-cadinene synthase has been purified by fractionation with ammonium sulfate, gel filtration on Sephacryl S-200 HR and anion exchange chromatography on DEAE-Sepharose CL-6B. Separation of (-)-γ-cadinene synthase from (+)-cubenene synthase is facilitated by a change in the elution behaviour of enzymes during anion exchange chromatography. All the evidence strongly suggests that the activities of (+)-cubenene synthase and (+)-epicubenol synthase are dual functions of the same enzyme.


References

  1. (a) L. Ruzicka, A. Eschenmoser and H. Hesser, Experientia, 1953, 9, 357 Search PubMed; (b) L. Ruzicka, Proc. Chem. Soc., 1959, 341 RSC; (c) L. Ruzicka, Pure Appl. Chem., 1963, 6, 493 CrossRef CAS.
  2. R. Croteau, in Biosynthesis of Isoprenoid Compounds, J. W. Porter and S. L. Spurgeon, eds., Wiley, New York, 1981, p. 225 Search PubMed.
  3. R. Croteau and D. E. Cane, in Methods in Enzymol., 1985, 110, 383 Search PubMed.
  4. D. E. Cane, in Biosynthesis of Isoprenoid Compounds, J. W. Porter and S. L. Spurgeon, eds., Wiley, New York, 1981, p. 283 Search PubMed.
  5. (a) D. E. Cane, Tetrahedron, 1980, 36, 109 CrossRef CAS; (b) D. E. Cane, Acc. Chem Res., 1985, 18, 220 CrossRef CAS.
  6. D. Arigini, Pure Appl. Chem., 1975, 41, 219 CrossRef.
  7. G. D. Davis and M. Essenberg, Phytochemistry, 1995, 39, 553 CrossRef CAS.
  8. (a) D. E. Cane, M. Tandon and D. C. Prabhakaran, J. Am. Chem. Soc., 1993, 115, 8103 CrossRef CAS; (b) D. E. Cane and M. Tandon, Tetrahedron Lett., 1994, 35, 5355 CrossRef CAS; (c) D. E. Cane and M. Tandon, J. Am. Chem. Soc., 1995, 117, 5602 CrossRef CAS.
  9. K. Nabeta, K. Kigure, M. Fujita, T. Nagoya, T. Ishikawa, H. Okuyama and T. Takasawa, J. Chem. Soc., Perkin Trans. 1, 1995, 1935 RSC.
  10. Y. Masada, in Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry, Hirokawa Publishing Company Inc., Tokyo, 1975, p. 269–275 Search PubMed.
  11. N. H. Anderson, P. Bissonette, C. B. Liu, B. Schenk, Y. Ohta, C. L. W. Teseng, A. Moore and S. Huneck, Phytochemistry, 1977, 16, 1731 CrossRef.
  12. D. E. Cane, B. J. Rawrings and C. C. Yang, J. Antibiot., 1987, 40, 1331 CAS.
  13. (a) D. E. Cane and R. B. Nachber, Tetrahedron Lett., 1976, 2097 CrossRef CAS; (b) D. E. Cane and R. B. Nachber, J. Am. Chem. Soc., 1978, 100, 3208 CrossRef CAS.
  14. G. Popjak, J. W. Cornforth, R. H. Cornforth, R. Rhyhage and G. S. Goodman, J. Biol. Chem., 1962, 237, 56 CAS.
  15. V. M. Dixit, F. M. Laskowics, W. I. Noall and C. D. Poulter, J. Org. Chem., 1981, 46, 1967 CrossRef CAS.
  16. V. J. Davisson, A. B. Woodside and C. D. Poulter, Methods Enzymol., 1985, 110, 130 CrossRef CAS.
  17. H. Itokawa, H. Matsuo and S. Mihashi, Chem. Pharm. Bull., 1983, 31, 1743 CAS.
  18. H. Sugisawa, C. Chen and K. Nabeta, in Analysis of Volatiles, ed. P. Schreier, Walter de Gruyter, Berlin, 1984, p. 357 Search PubMed.
  19. M. Bradford, Anal. Biochem., 1976, 72, 248 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.