1-Substituted 2′-deoxyinosine analogues

(Note: The full text of this document is currently only available in the PDF Version )

Lorenzo De Napoli, Anna Messere, Daniela Montesarchio, Gennaro Piccialli and Michela Varra


Abstract

The base 2-carbon of 2′,3′-di-O-acetyl-2′-deoxyinosine is strongly activated towards nucleophilic attack when either the 4-nitrophenyl or 2,4-dinitrophenyl group is attached to its N-1 position (product 1 or 2). 1-(ω-Aminoalkyl)- and 1-(ω-hydroxyalkyl)-2′-deoxyinosine derivatives 5, 8–10 have been efficiently synthesized by a rearrangement of the purine ring upon treatment of compound 1 or 2 with the appropriate α,ω-diamine or α,ω-hydroxyamine. Moreover 1-amino-2′-deoxyinosine 11 and 1-hydroxy-2′-deoxyinosine 13 have been easily prepared in high yields by reaction of substrate 1 or 2, respectively, with hydrazine or hydroxylamine.


References

  1. E. Shaw, J. Am. Chem. Soc., 1959, 81, 6021 CrossRef CAS; L. B. Townsend, Nucleoside Analogues: Chemistry, Biology and Medical Applications, ed. R. T. Walker, E. De Clercq and F. Eckstein, Plenum, New York, 1979, p. 209 Search PubMed.
  2. (a) N. Minakawa, Y. Sasabuchi, A. Kiyosue, N. Kojima and A. Matsuda, Chem. Pharm. Bull., 1996, 44, 288 CAS; (b) S. Pochet and R. D'Ari, Nucleic Acids Res., 1990, 18, 7127 CAS; (c) D. Betbeder and D. W. Hutchinson, Nucleosides, Nucleotides, 1990, 90, 569.
  3. L. De Napoli, A. Messere, D. Montesarchio and G. Piccialli, J. Org. Chem., 1995, 60, 2251 CrossRef.
  4. L. De Napoli, A. Messere, D. Montesarchio, G. Piccialli, C. Santacroce and M. Varra, J. Chem. Soc., Perkin Trans. 1, 1994, 923 RSC.
  5. 1-(ω-Hydroxyalkyl) hypoxanthine derivatives can be prepared from 1-(ω-hydroxyalkyl) adenine derivatives by a deamination process (a) T. Fujii, T. Saito and N. Terahara, Chem. Pharm. Bull., 1986, 34, 1094 CAS or by a 1-alkylation procedure for 9-substituted hypoxanthines; (b) A. Montgomery and H. J. Thomas, J. Org. Chem., 1963, 28, 2304.
  6. J. L. Ruth, Oligonucleotides and Analogues; a Practical Approach, ed. F. Eckstein, IRL Press, Oxford, 1991, pp. 255–281 Search PubMed.
  7. Molecular mechanics calculations confirmed the presence of an energy barrier created by the interactions of the 2-nitro group with the 6-O and 2-H atoms of the purine ring, hindering the complete rotation of the 2,4-dinitrophenyl ring. The same results were obtained when the corresponding 2-nitrophenyl derivative was synthesized (data not shown).
  8. P. Scheiner, S. Arwin, M. Eliacin and J. Tu, J. Heterocycl. Chem., 1985, 22, 1435 CAS.
  9. For example see: (a) A. D. Broom and R. K. Robins, J. Org. Chem., 1969, 34, 1025 CrossRef CAS; (b) G.-F. Huang, M. Maeda, T. Akamoto and Y. Kawazoe, Tetrahedron, 1975, 31, 1363 CrossRef CAS; (c) J. A. Montgomery and H. J. Thomas, J. Med. Chem., 1972, 15, 1334 CrossRef CAS.
  10. For example see: (a) A. R. Katritzky and J. M. Lagowsky, Chemistry of Heterocyclic N-Oxides, Academic Press, London, 1971 Search PubMed; (b) E. C. Taylor, C. C. Cheng and O. Vogl, J. Org. Chem., 1959, 24, 2019 CrossRef CAS; (c) H. Siegel, Helv. Chim. Acta, 1965, 48, 433 CrossRef; (d) J. C. Parham, J. Fissekis and G. B. Brown, J. Org. Chem., 1966, 31, 966 CAS; (e) Ref. 9c.