The synthesis of alkylated or acylated nitroarene cyclopentadienyliron complexes: an alternative approach to the synthesis of arylated alkanoates

(Note: The full text of this document is currently only available in the PDF Version )

Alaa S. Abd-El-Aziz, Waleed Boraie, Najeeb Al-Salem, Salwa A. Sadek and Karen M. Epp


Abstract

Time-dependent oxidation of η6-alkylaniline-η5-cyclopentadienyliron hexafluorophosphates, 17–32, allows for the preparation of nitrobenzene complexes with alkyl 33–48 or keto 49 substituents. Alkylnitroarene complexes are prepared by the oxidation of their corresponding aniline complexes with H2O2 in CF3CO2H for 20 min. An increase in the reaction time to 24 h gives rise to nitroarene complexes with keto substituents in lower yields. The use of nitroarenes as starting materials in the synthesis of alkanoates is of importance since it allows for the preparation of a large number of this class of compounds with a variety of alkyl substituents. Two different approaches have been utilized to allow for the synthesis of alkanoates. The first approach involves nucleophilic aromatic substitution of alkylnitrobenzene complexes with ethyl alkylacetoacetates followed by demetallation to give the alkanoates. This methodology allows for the preparation of these esters with a variety of alkyl substituents in either the meta or para positions. Another route outlines the reaction of phenylsulfonylacetonitrile with nitroarene complexes to prepare alkanoic acid precursors with alkyl substituents in the ortho, meta and para positions. The preparation of a larger pool of nitroarene complexes clearly demonstrates the advantage of using the cyclopentadienyliron arene complexes in the synthesis of alkanoates or their precursors, arylated phenylsulfonylacetonitriles, over traditional synthetic routes.


References

  1. T. Y. Shen, ‘Prostaglandin Synthetase Inhibitors I’, in Handbook of Experimental Pharmacology, Springer-Verlag, Berlin, Heidelberg, New York, vol. 50/II, 1979, p. 305 Search PubMed.
  2. T. Y. Shen, Angew. Chem., Int. Ed. Engl., 1972, 11, 6 CrossRef.
  3. T. Hirayama, M. Kamanda, H. Tsurumi and M. Mimura, Chem. Pharm. Bull., 1976, 24, 26 CAS.
  4. A. S. Abd-El-Aziz, C. R. de Denus and H. M. Hutton, Can. J. Chem., 1995, 374.
  5. A. S. Abd-El-Aziz, D. C. Schriemer and C. R. de Denus, Organometallics, 1994, 13, 374 CrossRef CAS.
  6. A. S. Abd-El-Aziz and C. R. de Denus, J. Chem. Soc., Perkin Trans. 1, 1993, 293 RSC.
  7. A. S. Abd-El-Aziz, S. Tesfalidet, C. R. de Denus and K. Lezynska, Synth. Commun., 1993, 23, 1415 CAS.
  8. D. J. Drain, M. J. Daly, M. Horlington, J. G. B. Howes, J. M. Scruton and R. A. Selway, J. Pharm. Pharmacol., 1970, 22, 684 Search PubMed.
  9. S. S. Adams, K. F. McCullough and J. S. Nicholson, Arch. Int. Pharmacodyn. Ther., 1969, 178, 115 Search PubMed.
  10. M. K. Jasani, W. W. Downie, B. M. Samuels and W. W. Buchanan, Ann. Rheum. Dis., 1968, 27, 457 CAS.
  11. A. McKillop, B. P. Swann and E. C. Taylor, J. Am. Chem. Soc., 1971, 93, 4919 CrossRef.
  12. J. Pataki, M. Konieczny and R. G. Harney, J. Org. Chem., 1982, 47, 1133 CrossRef CAS.
  13. H. Suzuki, Q. Yi, J. Inoue, K. Kusume and T. Ogawa, Chem. Lett., 1987, 887 CAS.
  14. S. G. Davies, Organotransition Metal Chemistry: Applications to Organic Synthesis, Pergamon Press, Oxford, 1982 Search PubMed.
  15. A. S. Abd-El-Aziz, C. R. de Denus, M. J. Zaworotko and L. R. MacGillivary, J. Chem. Soc., Dalton Trans., 1995, 3375 RSC.
  16. A. S. Abd-El-Aziz, Y. Lei and C. R. de Denus, Polyhedron, 1995, 14, 123.
  17. A. S. Abd-El-Aziz, K. M. Epp, C. R. de Denus and G. Fisher-Smith, Organometallics, 1994, 13, 2299 CrossRef CAS.
  18. A. S. Abd-El-Aziz, C. C. Lee, A. Piorko and R. G. Sutherland, J. Organomet. Chem., 1988, 348, 95 CrossRef CAS.
  19. A. Piorko, A. S. Abd-El-Aziz, C. C. Lee and R. G. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1989, 469 RSC.
  20. A. S. Abd-El-Aziz and C. R. de Denus, Synth. Commun., 1992, 22, 581 CAS.
  21. R. C. Cambie, S. J. Janssen, P. S. Rutledge and P. D. Woodgate, J. Organomet. Chem., 1992, 434, 97 CrossRef CAS.
  22. A. J. Pearson, J. G. Park, S. H. Yang and Y. H. Chuang, J. Chem. Soc., Chem. Commun., 1989, 1363 RSC.
  23. M. F. Semmelhack, G. R. Clark, J. L. Garcia, J. J. Harrison, Y. Thebtaranonth, W. Wulff and A. Yamashita, Tetrahedron, 1981, 37, 3957 CrossRef CAS.
  24. F. Hossner and M. Voyle, J. Organomet. Chem., 1988, 347, 365 CrossRef CAS.
  25. P. Del Buttero, S. Maiorana and A. Papagni, J. Chem. Soc., Chem. Commun., 1985, 1181 RSC.
  26. D. Astruc, Top. Curr. Chem., 1991, 180, 48.
  27. A. S. Abd-El-Aziz and K. M. Epp, Polyhedron, 1995, 14, 957 CrossRef CAS.
  28. C. C. Lee, A. S. Abd-El-Aziz, R. L. Chowdhury, A. Piorko and R. G. Sutherland, Synth. React. Inorg. Met. Org. Chem., 1986, 16, 541 CAS.
  29. A. S. Abd-El-Aziz, C. C. Lee, A. Piorko and R. G. Sutherland, J. Organomet. Chem., 1988, 348, 95 CrossRef CAS.
  30. C. C. Lee, U. S. Gill, M. Iqbal, C. I. Azogu and R. G. Sutherland, J. Organomet. Chem., 1982, 231, 151 CrossRef CAS.
  31. K. A. Abboud, S. H. Simonson, A. Piorko and R. G. Sutherland, Acta Crystallogr., Sect. C, 1991, 47, 860 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.