Synthesis of the enantiomers of myo-inositol 1,2,4,5-tetrakisphosphate, a regioisomer of myo-inositol 1,3,4,5-tetrakisphosphate

(Note: The full text of this document is currently only available in the PDF Version )

Stephen J. Mills and Barry V. L. Potter


Abstract

Routes for the synthesis of racemic myo-inositol 1,2,4,5-tetrakisphosphate DL-Ins(1,2,4,5)P4 5ab and the chiral antipodes D- and L-myo-inositol 1,2,4,5-tetrakisphosphate 5a and 5b, respectively, are described. For the synthesis of racemate 5ab, 3,6-di-O-benzoyl-1,2:4,5-di-O -isopropylidene-myo-inositol 7ab is prepared in two steps from myo-inositol. The ketals are hydrolysed under acidic conditions to give DL-1,4-di-O-benzoyl- myo-inositol 8ab. Phosphitylation of compounds 8ab using chloro(diethoxy)phosphine in the presence of base, followed by oxidation and a three-step deprotection strategy, gives DL-Ins(1,2,4,5)P4 5ab.The chiral tetrakisphosphates 5a and 5b are synthesized using a different route. The 4,5-isopropylidene group of DL-3,6-di-O -benzyl-1,2:4,5-di-O-isopropylidene-myo -inositol 13ab are selectively removed under mild acidic conditions to give diol 14ab. p-Methoxybenzylation at the 4,5-positions followed by acid hydrolysis of the cis-isopropylidene ketal affords cis-diol 16ab. Selective coupling of (S)-(+)-O -acetylmandelic acid with diol 16ab at the equatorial hydroxy group provides two diastereoisomers 18 and 19, which are separated by chromatography. Basic hydrolysis of the individual diastereoisomers provides the enantiomers 16a and 16b. Acidic hydrolysis gives D- and L-3,6-di-O-benzyl- myo-inositol 20a and 20b, respectively. Phosphitylation and oxidation of tetraols 20a and 20b gives the fully blocked derivatives, which are deprotected to give tetrakisphosphates 5a and 5b, respectively. The absolute configuration of compound 20a is established by a chemical method. DL-1,2:4,5-Di-O -isopropylidene-myo-inositol 12ab is coupled to (S)-(+)-O -acetylmandelic acid to give a mixture of bis-esters 26 and 27 and crystallisation of the mixture of diastereoisomers affords pure isomer 27. Basic hydrolysis gives the pure enantiomer 12a (for which the absolute configuration is known) and benzylation followed by acid hydrolysis gives tetraol 20a with the same physical properties as compound 20a prepared by a different route described previously. D-Ins(1,2,4,5)P4 5a is a potent mobiliser of intracellular Ca2+ ions in permeabilised platelets, while L-Ins(1,2,4,5)P4 5b is inactive.


References

  1. B. V. L. Potter and D. Lampe, Angew. Chem., Int. Ed. Engl., 1995, 34, 1933 CrossRef CAS .
  2. G. W. Mayr, Biochem. J., 1989, 259, 463 CAS .
  3. V. Sylvia, G. Curtin, J. Norman, J. Stec and D. Busbee, Cell, 1988, 54, 651 CrossRef CAS .
  4. A. Lückhoff and D. E. Clapham, Nature (London), 1992, 355, 356 CrossRef CAS .
  5. P. J. Cullen, J. J. Hsuan, O. Truong, A. J. Letcher, T. R. Jackson, A. P. Dawson and R. F. Irvine, Nature (London), 1995, 376, 527 CrossRef CAS .
  6. M. A. Polokoff, G. J. Bencen, J. P. Vacca, J. de Solms, S. D. Young and J. R. Huff, J. Biol. Chem., 1988, 263, 11927 .
  7. M. Hirata, Y. Watanabe, T. Ishimatsu, T. Ikebe, Y. Kimura, K. Yamaguchi, S. Ozaki and T. Koga, J. Biol. Chem., 1989, 264, 20303 CAS .
  8. S. H. Ryu, S. Y. Lee, K.-Y. Lee and S. G. Rhee, FASEB J., 1987, 1, 388 Search PubMed .
  9. G. St. J. Bird and J. W. Putney Jr., J. Biol. Chem., 1996, 271, 6766 CrossRef CAS .
  10. D. J. Gawler, B. V. L. Potter and S. R. Nahorski, Biochem. J., 1990, 272, 519 CAS .
  11. D. J. Gawler, B. V. L. Potter, R. Gigg and S. R. Nahorski, Biochem, J., 1991, 276, 163 CAS .
  12. R. A. Wilcox, R. A. J. Challis, G. Baudin, A. Vasella, B. V. L. Potter and S. R. Nahorski, Biochem. J., 1993, 294, 191 CAS .
  13. M. Hirata, F. Yanaga, T. Koga, T. Ogasawara, Y. Watanabe and S. Ozaki, J. Biol. Chem., 1990, 265, 8404 CAS .
  14. (a) S. J. Mills, S. T. Safrany, R. A. Wilcox, S. R. Nahorski and B. V. L. Potter, Bioorg. Med. Chem. Lett., 1993, 3, 1505 CrossRef CAS ; (b) N. Hirata, N. Narumoto, Y. Watanabe, T. Kanematsu, T. Koga and S. Ozaki, Mol. Pharmacol., 1994, 45, 271 Search PubMed .
  15. A. P. Kozikowski, A. H. Fauq, R. A. Wilcox and S. R. Nahorski, Bioorg. Med. Chem. Lett., 1995, 5, 1295 CrossRef CAS ; J. Chen, G. Dormán and G. D. Prestwich, J. Org. Chem., 1996, 61, 393 CrossRef CAS .
  16. J. Gigg, R. Gigg, S. Payne and R. Connant, Carbohydr. Res., 1985, 142, 132 CrossRef CAS .
  17. J. L. Meek, F. Davidson and F. W. Hobbs Jr., J. Am. Chem. Soc., 1988, 110, 2317 CrossRef CAS .
  18. M. R. Hamblin, R. Gigg and B. V. L. Potter, J. Chem. Soc., Chem. Commun., 1987, 626 RSC .
  19. D. J. R. Massy and P. Wyss, Helv. Chim. Acta, 1990, 73, 1037 CrossRef CAS .
  20. J. Gigg, R. Gigg, S. Payne and R. Conant, J. Chem. Soc., Perkin Trans. 1, 1987, 423 RSC .
  21. N. Chida, E. Yamada and S. Ogawa, J. Carbohydr. Chem., 1988, 7, 555 CAS .
  22. N. Chida, Y. Furuno and S. Ogawa, J. Chem. Soc., Chem. Commun., 1989, 1230 RSC .
  23. S. J. Mills and B. V. L. Potter, J. Org. Chem., 1996, 61, 8980 CrossRef CAS .
  24. M. Jones, K. K. Rana, J. G. Ward and R. C. Young, Tetrahedron Lett., 1989, 30, 5353 CrossRef CAS .
  25. J. L. Chiara and M. Martín-Lomas, Tetrahedron Lett., 1994, 35, 2696 CrossRef CAS .
  26. T. Desai, J. Gigg, R. Gigg, E. Martín-Zamora and N. Schnetz, Carbohydr. Res., 1994, 258, 135 CrossRef CAS .
  27. K.-L. Yu and B. Fraser-Reid, Tetrahedron Lett., 1988, 29, 979 CrossRef CAS .
  28. A. M. Cooke, R. Gigg and B. V. L. Potter, Tetrahedron Lett., 1987, 28, 2305 CrossRef CAS .
  29. R. A. Wilcox, S. T. Safrany, D. Lampe, S. J. Mills, S. R. Nahorski and B. V. L. Potter, Eur. J. Biochem., 1994, 223, 115 CAS .
  30. S. T. Safrany, S. J. Mills, C. Liu, D. Lampe, N. J. Noble, S. R. Nahorski and B. V. L. Potter, Biochemistry, 1994, 33, 10763 CrossRef CAS .
  31. W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923 CrossRef CAS .
  32. A. Briggs, J. Biol. Chem., 1922, 53, 13 CAS ; D. Lampe, C. Liu and B. V. L. Potter, J. Med. Chem., 1994, 37, 907 CrossRef CAS .
  33. S.-K. Chung and Y. Ryu, Carbohydr. Res., 1994, 258, 145 CrossRef CAS .