Asymmetric hydrogenation of acrylic acid derivatives by novel chiral rhodium–phosphinediamine complex catalysts by selective ligation between two amino units of the ligand and electrostatic interaction

(Note: The full text of this document is currently only available in the PDF Version )

Issaku Yamada, Munetaka Ohkouchi, Motowo Yamaguchi and Takamichi Yamagishi


Abstract

The novel chiral phosphinediamine ligand (PN2) having two amino units has been readily prepared from (S[hair space])-1-phenylethylamine derivatives and dichlorophosphine. In the hydrogenation of acrylic acids by a rhodium–PN2 catalyst, high enantioselectivities were achieved by the effective chiral field formed through selective P-N chelation and electrostatic interaction between the amino unit of the ligand and the carboxy unit of the substrate.


References

  1. K. E. Koenig, in Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, 1985, vol. 5, pp. 71–101 Search PubMed; H. Brunner, in Topics in Stereochemistry, ed. E. L. Eliel and S. H. Wilen, John Wiley & Sons, New York, 1988, vol. 18, pp. 129–247 Search PubMed; H. Takaya, T. Ohta and R. Noyori, in Catalytic Asymmetric Synthesis, ed. I. Ojima, VCH Publishers, New York, 1993, pp. 1–39 Search PubMed; R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, New York, 1994, pp. 16–94 Search PubMed.
  2. W. S. Knowles, M. J. Sabacky and B. D. Vineyard, J. Chem. Soc., Chem. Commun., 1972, 10 RSC; B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman and D. J. Weinkauff, J. Am. Chem. Soc., 1977, 99, 5946 CrossRef CAS.
  3. For recent reviews, see: K. M. Pietrusiewicz and M. Zablocka, Chem. Rev., 1994, 94, 1375 Search PubMed.
  4. T. Hayashi, N. Kawamura and Y. Ito, Tetrahedron Lett., 1988, 29, 5969 CrossRef CAS; T. Hayashi, N. Kawamura and Y. Ito, J. Am. Chem. Soc., 1987, 109, 7876 CrossRef CAS.
  5. Brunner and Hayashi reported chiral ligands having one phosphorus atom and two nitrogen atoms, although the mode of coordination is not clear; H. Brunner and H. Weber, Chem. Ber., 1985, 118, 3380 Search PubMed; T. Hayashi, T. Mise, M. Fukushima, M. Kagotani, N. Nagashima, Y. Hamada, A. Matsumoto, S. Kawakami, M. Konishi, K. Yamamoto and M. Kumada, Bull. Chem. Soc. Jpn., 1980, 53, 1138 CrossRef CAS.
  6. I. Yamada, M. Yamaguchi and T. Yamagishi, Tetrahedron: Asymmetry, 1996, 7, 3339 CrossRef CAS.
  7. K. Yamamoto, A. Tomita and J. Tsuji, Chem. Lett., 1978, 3 CAS.
  8. I. D. MacKay and N. C. Payne, Can. J. Chem., 1986, 64, 1930; N. C. Payne and G. R. Tobin, Acta Crystallogr., Sect. C, 1992, 48, 45 CrossRef and references therein.
  9. N. C. Payne and D. W. Stephan, Inorg. Chem., 1982, 21, 182 CrossRef CAS.
  10. W. R. Cullen and J. D. Woollins, Can. J. Chem., 1982, 60, 1793 CAS.
  11. Using a phosphinediamine ligand in which a p-methyl substituent was introduced into the phenyl units of the ligand 1b, the reaction was faster and the selectivity was higher than with 1b. For 2-methylcinnamic acid under the conditions of 60 atm and 25 °C, the enantioselectivity was 90% ee while 1b gave 81% ee.
  12. % Ees in the hydrogenation of 3a by various phosphorus ligands are as follows: (a) Rh–diPAMP (1% ee): B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman and D. J. Weinkauff, J. Am. Chem. Soc., 1977, 99, 5946 Search PubMed; (b) Rh–DIOP (62% ee): P. Aviron-Violet, Y. Colleuille and J. Varagnat, J. Mol. Catal., 1979, 5, 41 Search PubMed; (c) Rh–DIOXOP (58% ee): D. Lafont, D. Sinou and G. Descotes, J. Organomet. Chem., 1979, 169, 87 Search PubMed; (d) Rh–NMDPP (61% ee): J. D. Morrison, R. E. Burnett, A. M. Aguiar, C. J. Morrow and C. Phillips, J. Am. Chem. Soc., 1971, 93, 1301 Search PubMed; (e) Ru–BINAP (89% ee): T. Uemura, X. Zhang, K. Matsumura, N. Sayo, H. Kumobayashi, T. Ohta, K. Nozaki and H. Takaya, J. Org. Chem., 1996, 61, 5510 Search PubMed.
  13. % Ees in the hydrogenation of 3b reported are as follows: (a) Rh–6-O-(diphenylphosphino)-1,2∶3,4-di-O-isopropylidene-a-D-galactopyranose (62% ee): M. Yamashita, K. Hiramatsu and M. Yamada, Bull. Chem. Soc. Jpn., 1982, 55, 2917 Search PubMed; (b) Ru–DIOP (37% ee): U. Matteoli, G. Menchi, P. Frediani, M. Bianchi and F. Piacenti, J. Organomet. Chem., 1985, 285, 281 Search PubMed; (c) Ru–diPAMP (40% ee): J. P. Genêt, C. Pinel, S. Mallart, S. Juge, N. Cailhol and J. A. Laffitte, Tetrahedron Lett., 1992, 33, 5343 Search PubMed; (d) Ru–BPPM (17% ee) and Ru–Chiraphos (30% ee): J. P. Genêt, C. Pinel, V. Rotovelomanana-Vidal, S. Mallart, X. Pfister, L. Bischoff, M. C. Caño De Andrade, S. Darses, C. Galopin and J. A. Laffitte, Tetrahedron: Asymmetry, 1994, 5, 675 Search PubMed; (e) Ru–BINAP (97% ee): see ref. 12(e).
  14. I. Ojima, T. Kogure and N. Yoda, J. Org. Chem., 1980, 45, 4728 CrossRef CAS; C. R. Landis and J. Halpern, J. Am. Chem. Soc., 1987, 109, 1746 CrossRef CAS.
  15. % Ee in the hydrogenation of 3h reported: Ru–BINAP (57% ee): M. Saburi, L. Shao, T. Sakurai and Y. Uchida, Tetrahedron Lett., 1992, 33, 7877 Search PubMed.
  16. % Ee in the hydrogenation of 3i reported: Ru–BINAP (70% ee): see ref. 12(e).
  17. T. Yamagishi, S. Ikeda, M. Yatagai, M. Yamaguchi and M. Hida, J. Chem. Soc., Perkin Trans. 1, 1988, 1787 RSC; S. Ikeda, T. Yamagishi, M. Yamaguchi and M. Hida, Bull. Chem. Soc. Jpn., 1989, 62, 3508 CAS.
  18. Enantiomeric excess absolute configuration were determined from 13C NMR spectral results, the diastereoisomeric signals of the 2-methyl group in the presence of (R)-1-phenylethylamine being integrated. For the 2-methylbutyric acid; M. T. Ashby and J. Halpern, J. Am. Chem. Soc., 1991, 113, 589 Search PubMed for the 2-methyl-3-phenylpropionic acid; M. B. Watson and G. W. Youngson, J. Chem. Soc. C, 1968, 258 CrossRef CAS for the 2-methyl-3-(1-naphthyl)propionic acid; B. Aberg, Swed. J. Agric. Res., 1976, 6, 231 Search PubMed for the 2-methyl-3-(2-naphthyl)propionic acid; Y. Takeya, H. Matsuzawa and K. Iwata, Jap P 02,134,623 [90 134,623]/ 1990(Chem. Abstr., 1991, 114, 91598) RSC.
Click here to see how this site uses Cookies. View our privacy policy here.