Diastereoselective acyclic aza-[2,3] Wittig sigmatropic rearrangements

(Note: The full text of this document is currently only available in the PDF Version )

James C. Anderson, Stephen C. Smith and Martin E. Swarbrick


Abstract

The scope of anion-stabilising groups in promoting and controlling the diastereoselection of the aza-[2,3] Wittig sigmatropic rearrangement has been assessed by the syntheses of allylic amines 1c–g that have incorporated SiPhMe2, Ph, SPh, SOPh and SO2Ph respectively at the C-2 position. The subsequent anionic [2,3]-sigmatropic rearrangements are analysed with respect to the extent of diastereoselection of the product homoallylic amines 2 and 3. It appears that silicon not only is the most efficient at electronically facilitating this rearrangement, but its steric bulk controls the diastereoselectivity of the process exclusively. Phenyl and phenylthio substituents also have a similar, but decreased, effect on diastereoselection that mirrors their lower steric bulk in comparison to the silicon derivative. Sulfoxide and sulfone substituents are incompatible with the reaction conditions required for rearrangement.


References

  1. For a recent review see T. Nakai and K. Mikami, Org. React., 1994, 46, 105 Search PubMed.
  2. (a) M. A. Reetz and D. Schinzer, Tetrahedron Lett., 1975, 3485 CrossRef CAS; (b) C. A. Broka and T. Shen, J. Am. Chem. Soc., 1989, 111, 2981 CrossRef CAS; (c) Y. Murata and T. Nakai, Chem. Lett., 1990, 2069 CAS; (d) I. Coldham, J. Chem. Soc., Perkin Trans. 1, 1993, 1275 RSC; (e) R. E. Gawley, Q. Zhang and S. Campagna, J. Am. Chem. Soc., 1995, 117, 11 817 CrossRef CAS; (f) M. Gulea-Purcarescu, E. About-Jaudet, N. Collignon, M. Saquet and S. Masson, Tetrahedron, 1996, 52, 2075 CrossRef CAS.
  3. T. Durst, R. V. D. Elzen and M. J. Le Belle, J. Am. Chem. Soc., 1972, 94, 9261 CrossRef CAS.
  4. (a) J. Ahman and P. Somfai, J. Am. Chem. Soc., 1994, 116, 9781 CrossRef; (b) I. Coldham, A. J. Collis, R. J. Mould and R. E. Rathmell, J. Chem. Soc., Perkin Trans. 1, 1995, 2739 RSC.
  5. J. C. Anderson, D. C. Siddons, S. C. Smith and M. E. Swarbrick, J. Chem. Soc., Chem. Commun., 1995, 1835 RSC.
  6. J. C. Anderson, D. C. Siddons, S. C. Smith and M. E. Swarbrick, J. Org. Chem., 1996, 61, 4820 CrossRef CAS.
  7. P. v. R. Schleyer, T. Clark, A. J. Kos, G. W. Spitznagel, C. Rohde, D. Arad, K. N. Houk and N. G. Rondan, J. Am. Chem. Soc., 1984, 106, 6467 CrossRef CAS.
  8. Here we draw an analogy to the calculated transition state for the oxy-[2,3] Wittig rearrangement. Y.-D. Wu, K. N. Houk and J. A. Marshall, J. Org. Chem., 1990, 55, 1421 Search PubMed See also K. Mikami, T. Uchida, T. Hirano, Y.-D. Wu and K. N. Houk, Tetrahedron, 1994, 50, 5917 CrossRef CAS.
  9. J. C. Anderson, M. E. Swarbrick and C. A. Roberts, unpublished results.
  10. I. Fleming, J. Dunoduès and R. Smithers, Org. React., 1989, 37, 57 CAS.
  11. H. Oda, M. Sato, Y. Morizawa, K. Oshima and H. Nozaki, Tetrahedron, 1985, 41, 3257 CrossRef CAS.
  12. A. G. Brook, J. M. Duff and D. G. Anderson, Can. J. Chem., 1970, 48, 561 CAS.
  13. L. E. Overman, J. Am. Chem. Soc., 1976, 98, 2901 CrossRef CAS.
  14. K. Burgess and L. D. Jennings, J. Am. Chem. Soc., 1991, 113, 6129 CrossRef CAS.
  15. K. Takaki, M. Okada, M. Yamada and K. Negoro, J. Org. Chem., 1982, 47, 1200 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.