Internally quenched fluorogenic, α-helical dimeric peptides and glycopeptides for the evaluation of the effect of glycosylation on the conformation of peptides

(Note: The full text of this document is currently only available in the PDF Version )

Seema Mehta, Morten Meldal, Vito Ferro, Jens Ø. Duus and Klaus Bock


Abstract

A panel of α-helical, dimeric coiled-coil peptides has been designed and synthesized for the evaluation of the effect of glycosylation on the conformation of these coiled-coil peptides. Two glycosylated building blocks, N[hair space]α -(fluoren-9-ylmethoxycarbonyl)-O-(2,3,4-tri- O-acetyl-6-azido-6-deoxy-β-D -glucopyranosyl)-L-threonine pentafluorophenyl ester 8 and N[hair space]α -(fluoren-9-ylmethoxycarbonyl)-O-{2,3,4-tri- O-acetyl-6-[2′-(tert -butoxycarbonylamino)benzoylamino]-6-deoxy-β-D -glucopyranosyl}-L-threonine pentafluorophenyl ester 9 containing the fluorogenic 2-aminobenzamide (Abz) group, have been synthesized. These compounds have been obtained by the glycosylation of N[hair space]α-Fmoc-Thr-OPfp with the corresponding glycosyl trichloroacetimidate donors and have been incorporated into the solid-phase synthesis of the peptides 1–3 and 7 and glycopeptides 4–6. Compounds 1 and 4–7 have been synthesized as internally quenched fluorogenic compounds where the Abz group has been employed as the fluorogenic probe and 3-nitrotyrosine Tyr(NO2) as the quenching chromophore. Steady-state fluorescence studies have provided evidence to support the dimerization of the α-helical peptides. Denaturation studies, by fluorescence as well as CD spectroscopy, indicate that the introduction of a carbohydrate moiety into the coiled-coil peptides has a significant destabilizing effect on the α-helicity.


References

  1. H. Lis and N. Sharon, Eur. J. Biochem, 1993, 218, 1 CAS; H. C. Joao and R. A. Dwek, Eur. J. Biochem., 1993, 218, 239 CAS; J. R. Rasmussen, Curr. Opin. Struct. Biol., 1992, 2, 682 CrossRef CAS; R. B. Parekh, Curr. Opin. Struct. Biol., 1991, 1, 750 CrossRef CAS; R. A. Dwek, Chem. Rev., 1996, 96, 683 CrossRef CAS.
  2. F. C. Grochee, M. J. Gramer, D. C. Andersen, J. B. Bahr and J. R. Rasmussen, Frontiers in Bioprocessing II, ed. C. P. Todd, S. K. Sikdar and M. Bier, ACS-series, Washington, DC, 1992, p. 199 Search PubMed.
  3. T. Arakawa and S. N. Timasheff, Methods Enzymol., 1985, 114, 49 CrossRef CAS.
  4. K. Olden, J. B. Parent and S. L. White, Biochim. Biophys. Acta, 1982, 650, 209 CrossRef CAS; A. D. Elbein, Methods Enzymol., 1987, 138, 661 CrossRef CAS.
  5. M. A. Titus, Curr. Opin. Cell Biol., 1993, 5, 77 CAS; A. Columbus, Curr. Opin. Cell Biol., 1993, 5, 17.
  6. K. T. O'Neil and W. F. DeGrado, Science, 1990, 250, 646 CrossRef CAS.
  7. L. Otvos, J. Thurin, E. Kollat, L. Urge, H. M. Mantsch and M. Hollosi, Int. J. Pept. Protein Res., 1991, 38, 476 Search PubMed; J. P. Aubert, N. Helbecque and M. H. Loueheux-Lefebvre, Arch. Biochem. Biophys., 1981, 208, 20 CAS.
  8. H. C. Joao, I. G. Scragg and R. A. Dwek, FEBS Lett., 1992, 307, 343 CrossRef CAS; J. T. Davis, S. Hirani, C. Bartlett and B. R. Reid, J. Biol. Chem., 1994, 269, 3331 CAS.
  9. K. G. Rice, P. Wu, L. Brand and Y. C. Lee, Biochemistry, 1993, 32, 7264 CrossRef CAS; 1991, 30, 6646; B. Imperiali and K. W. Rickert, Proc. Natl. Acad. Sci. USA, 1995, 92, 97 Search PubMed.
  10. P. Y. Chou and G. D. Fasman, Annu. Rev. Biochem., 1978, 47, 251 CrossRef CAS; N. E. Zhou, C. M. Kay and R. S. Hodges, J. Mol. Biol., 1994, 237, 500 CrossRef CAS.
  11. S. Y. M. Lau, A. K. Taneja and R. S. Hodges, J. Biol. Chem., 1984, 259, 13 253 CAS.
  12. V. T. Förster, Ann. Phys., 1948, 6, 55.
  13. P. Well and L. Brand, Anal. Biochem., 1994, 218, 1 CrossRef CAS.
  14. M. Meldal and K. Breddam, Anal. Biochem., 1991, 195, 141 CrossRef CAS.
  15. J. Ø. Duus, J. Winkler and M. Meldal, manuscript in preparation.
  16. R. L. Whistler, L. W. Doner and M. Kosik, Methods Carbohydr. Chem., 1972, 6, 411 Search PubMed.
  17. M. G. Ambrose and R. W. Binkley, J. Org. Chem., 1983, 48, 674 CrossRef CAS.
  18. Z. Gyorgydeak and L. Szilagyi, Leibigs Ann. Chem., 1987, 235 CAS.
  19. R. R. Schmidt, Angew. Chem., Int. Ed. Engl., 1986, 25, 212 CrossRef.
  20. G. Excoffier, D. Gagnaire and J.-P. Utille, Carbohydr. Res., 1975, 39, 368 CrossRef CAS.
  21. P. J. Garegg, T. Iverson and S. Oscarson, Carbohydr. Res., 1976, 50, c12 CrossRef CAS.
  22. V. Pozgay and H. Jennings, J. Org. Chem., 1987, 52, 4635 CrossRef; 1988, 53, 4042.
  23. M. Meldal, Tetrahedron Lett., 1992, 33, 3077 CrossRef CAS.
  24. A. Dryland and R. C. Sheppard, Tetrahedron, 1988, 44, 859 CrossRef CAS; M. Meldal, A. Holm and O. Buchardt, PCT Int. Appl. WO 90 07,975 (Chem. Abstr., 1991, 114, 82556v) Search PubMed; L. R. Cameron, J. L. Holder, M. Meldal and R. C. Sheppard, J. Chem. Soc., Perkin Trans. 1, 1988, 2895 Search PubMed.
  25. H. Rink, Tetrahedron Lett., 1987, 28, 3787 CrossRef CAS.
  26. R. Knorr, A. Trzeciak, W. Bannwarth and D. Gillessen, Tetrahedron Lett., 1989, 30, 1927 CrossRef CAS.
  27. E. Atherton, L. R. Cammeron and R. C. Sheppard, Tetrahedron, 1988, 44, 843 CrossRef CAS.
  28. M. Meldal and K. J. Jensen, J. Chem. Soc., Chem. Commun., 1990, 438 RSC.
  29. E. Meinjohanns, M. Meldal, T. Jensen, O. Werdelin, L. Galli-Stampino, S. Mouritsen and K. Bock, J. Chem. Soc., Perkin Trans. 1, 1997, 871 RSC.
  30. I. Christiansen-Brams, M. Meldal and K. Bock, J. Chem. Soc., Perkin Trans. 1, 1993, 1461 RSC.
  31. K. Dax, W. Wolflehner and H. Weidmann, Carbohydr. Res., 1978, 65, 132 CrossRef CAS.
  32. T. Utamura, K. Kuromatsu, K. Suwa, K. Koizumi and T. Shingu, Chem. Pharm. Bull., 1986, 34, 2341 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.