Selective mono-N-methylation of primary aromatic amines by dimethyl carbonate over faujasite X- and Y-type zeolites

(Note: The full text of this document is currently only available in the PDF Version )

Maurizio Selva, Andrea Bomben and Pietro Tundo


Abstract

The reaction of dimethyl carbonate (DMC) with different primary aromatic amines has been investigated under batch conditions (autoclave) in the presence of Y- and X-type zeolites. Operating at 120–150 °C, highly selective mono-N-methylations are observed for anilines even when they are deactivated by either electronic effects or steric hindrance (G–C6H4NH2, G = p-NO2, p-CN, o-CO2CH3 and 2,6-dimethylaniline); typical selectivities for the formation of the corresponding mono-N-methyl derivatives [ArNH(CH3)] are in the range 92–98%, at a substrate conversion of 72–93%. A synergic effect between the reactivity of DMC (acting both as a methylating and as a reversible methoxycarbonylating agent) and the dual acid–base properties of zeolites is considered to be responsible for the unusually high selectivity observed; accordingly, a reaction mechanism is discussed, involving carbamates (ArNHCO2CH3) and N-methylcarbamates [ArN(CH3)CO2CH3] as intermediates. The reaction is an example of a synthesis with low environmental impact: it couples the use of a non-toxic methylating agent (DMC, in place of the highly toxic methyl halides or dimethyl sulfate) with eco-friendly catalysts (zeolites) in a waste-free process.


References

  1. Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, New York, 3rd edn., 1978, vol. 2, pp. 309–321 Search PubMed.
  2. J. March, in Advanced Organic Chemistry, Wiley, New York, 4th edn., 1991 Search PubMed.
  3. M. Onaka, K. Ishikawa and Y. Izumi, Chem. Lett., 1982, 1783 CAS.
  4. M. Onaka, A. Umezono, M. Kawai and Y. Izumi, J. Chem. Soc., Chem. Commun., 1985, 1202 RSC.
  5. Y. Izumi and M. Onaka, Adv. Catal., 1992, 38, 249.
  6. T. M. Wortel, D. Oudlin, C. J. Vleugel, D. P. Roelofsen and H. van Bekkum, J. Catal., 1979, 60, 110 CrossRef CAS.
  7. P. Tundo, F. Trotta and G. Moraglio, J. Chem. Soc., Perkin Trans. 1, 1989, 1070 RSC.
  8. M. Selva, C. A. Marques and P. Tundo, J. Chem. Soc., Perkin Trans. 1, 1994, 1323 RSC.
  9. P. Tundo and M. Selva, CHEMTECH, 1995, 25(5), 31 CAS.
  10. A. Bomben, C. A. Marques, M. Selva and P. Tundo, Tetrahedron, 1995, 51, 11573 CrossRef CAS.
  11. P. Tundo and M. Selva, in Green Chemistry: Designing Chemistry for the Environment, ed. P. Anastas and T. Williamson, ACS Symposium Series No. 626, 1996, ch. 7, pp. 81–91 Search PubMed.
  12. F. Trotta, P. Tundo and G. Moraglio, J. Org. Chem., 1987, 52, 1300 CrossRef.
  13. M. Lissel, A. R. Rohani-Dezfuli and G. Vogt, J. Chem. Res. (S), 1989, 312 Search PubMed.
  14. P. R. Hari Prasad Rao, P. Massiani and D. Barthomeuf, Catal. Lett., 1995, 31, 115 CrossRef CAS.
  15. Z.-H. Fu and Y. Ono, Catal. Lett., 1993, 22, 277 CrossRef CAS.
  16. D. Delledonne, F. Rivetti and U. Romano, J. Organomet. Chem., 1995, 448, C15 CrossRef CAS.
  17. P. Tundo, in Continuous Flow Methods in Organic Synthesis, Horwood, Chichester (UK), 1991, ch. 1 Search PubMed.
  18. N. Bortnick, L. S. Luskin, M. D. Hurwitz and A. Rytina, J. Am. Chem. Soc., 1956, 78, 4358 CrossRef CAS.
  19. J. Grimshaw, R. J. Haslett and J. Trocha-Grimshaw, J. Chem. Soc., Perkin Trans. 1, 1977, 2448 RSC.
  20. R. A. Katritzky and J. M. Lagowski, J. Chem. Soc., 1958, 4155 RSC.
  21. R. M. Moriarty, C. J. Chany II, R. K. Vaid, O. Prakash and S. M. Tuladhar, J. Org. Chem., 1993, 58, 2478 CrossRef CAS.
  22. I. D. Rae, Austr. J. Chem., 1966, 19, 409 CAS.
  23. C. Wünsche, Org. Mass. Spectrom., 1973, 7, 1253.
  24. A. Maquestiau, Y. Van Haverbeke, R. Flammang, M. C. Pardo and J. Elguero, Org. Mass. Spectrom., 1974, 9, 1188 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.