Total synthesis of milbemycin E: development of a procedure for the introduction of the 3,4-double bond and synthesis of the C(1)–C(10) fragment

(Note: The full text of this document is currently only available in the PDF Version )

Emma R. Parmee, Simon V. Mortlock, Nicholas A. Stacey, Eric J. Thomas and (the late) Owen S. Mills


Abstract

Dehydration of the 5-hydroxycyclohexanecarboxylate 13 gives the exocyclic alkene 14 rather than its endocyclic isomer. However, the 3,4-double bond can be introduced into precursors of milbemycin E 1 using oxidative elimination of phenylselanyl ketones. The hydroxycyclohexanones 6 and 31 have been converted into the phenylselanyl ketones 19 and 37, which on oxidative elimination followed by stereoselective reduction give the 3-methylcyclohex-2-enecarboxylates 23 and 40 together with only 10–15% of the exocyclic alkenes 24 and 42. Interestingly, if the oxidative elimination is carried out on the alcohol 25, the 5-methylenecyclohexanecarboxylate 24 is the major product. Conversion of 40 into its benzoate, and oxidation of the furan ring using singlet oxygen, gives the hydroxybutenolide 43 ready for incorporation into a milbemycin synthesis. To test the compatibilty of the cyclohexene double bond with the proposed Wittig reaction, the alcohol 40 has been converted into the tert-butyldimethylsilyl ether 44 and the furan oxidised to give the hydroxybutenolide 45. Condensation with an excess of (2-methylpropylidene)triphenylphosphorane gives the Wittig product which has been isolated as its methyl ester and isomerised using a trace of iodine into the (Z,E[hair space])-diene 47.


References

  1. M. J. Hughes and E. J. Thomas, J. Chem. Soc., Perkin Trans. 1, 1993, 1493 RSC; M. J. Hughes, E. J. Thomas, M. D. Turnbull, R. H. Jones and R. E. Warner, J. Chem. Soc., Chem. Commun., 1985, 755 RSC.
  2. H. G. Davies and R. H. Green, Chem. Soc. Rev., 1991, 20, 211; 271 RSC.
  3. P. G. Steel and E. J. Thomas, J. Chem. Soc., Perkin Trans. 1, 1997, 371 RSC.
  4. Preliminary communication: S. V. Mortlock, N. A. Stacey and E. J. Thomas, J. Chem. Soc., Chem. Commun., 1987, 880 Search PubMed.
  5. S. Hanessian, A. Ugolini, P. J. Hodges, P. Beaulieu, D. Dube and C. Andre, Pure Appl. Chem., 1987, 59, 299 CrossRef CAS; J. D. White and G. L. Bolton, J. Am. Chem. Soc., 1990, 112, 1626 CrossRef CAS; J. D. White, G. L. Bolton, A. P. Dantanarayana, C. M. J. Fox, R. N. Hiner, R. W. Jackson, K. Sakuma and U. S. Warrier, J. Am. Chem. Soc., 1995, 117, 1908 CrossRef CAS.
  6. B. Fraser-Reid, H. Wolleb, R. Faghih and J. Barchi, Jr., J. Am. Chem. Soc., 1987, 109, 933 CrossRef CAS; S. Hanessian, D. Dube and P. J. Hodges, J. Am. Chem. Soc., 1987, 109, 7063 CrossRef CAS.
  7. J. S. Baran, J. Org. Chem., 1960, 25, 257 CrossRef CAS.
  8. B. Fraser-Reid, J. Barchi, Jr. and R. Faghih, J. Org. Chem., 1988, 53, 923 CrossRef CAS.
  9. H. Emde, A. Gotz, K. Hofmann and G. Simchen, Liebigs Ann. Chem., 1981, 1643 Search PubMed.
  10. Y. Ito, T. Hirao and T. Saegusa, J. Org. Chem., 1978, 43, 1011 CrossRef CAS.
  11. T. Tsuji, I. Minami and I. Shimizu, Tetrahedron Lett., 1983, 24, 5635 CrossRef.
  12. L. Blanco, P. Amice and J. M. Conia, Synthesis, 1976, 194 CrossRef CAS.
  13. V. Burckhardt and T. Reichstein, Helv. Chim. Acta, 1942, 25, 821 CrossRef CAS.
  14. T. G. Payne and P. R. Jefferies, Tetrahedron, 1973, 29, 2575 CrossRef CAS.
  15. Selenoxide elimination was developed independently for the introduction of unsaturation into 3,4-dihydromilbemycins and 3,4-dihydroavermectin aglycones; A. Armstrong, S. V. Ley, A. Madin and S. Mukherjee, Synlett, 1990, 328 Search PubMed; S. V. Ley, N. J. Anthony, A. Armstrong, M. G. Brasca, T. Clarke, D. Culshaw, C. Greck, P. Grice, A. B. Jones, B. Lygo, A. Madin, R. N. Sheppard, A. M. Z. Slawin and D. J. Williams, Tetrahedron, 1989, 45, 7161 CrossRef CAS; S. V. Ley, A. Armstrong, D. Diez-Martin, M. J. Ford, P. Grice, J. L. Knight, H. C. Kolb, A. Madin, C. A. Marby, S. Mukherjee, A. N. Shaw, A. M. Z. Slawin, S. Vile, A. D. White, D. J. Williams and M. Woods, J. Chem. Soc., Perkin Trans. 1, 1991, 667 CrossRef CAS; N. A. Anthony, T. Clarke, A. B. Jones and S. V. Ley, Tetrahedron Lett., 1987, 28, 5755 RSC.
  16. J. Scherkenbeck and U. Wachendorf-Neumann, Tetrahedron Lett., 1991, 32, 1719 CrossRef CAS.
  17. H. J. Reich, I. L. Reich and J. M. Renga, J. Am. Chem. Soc., 1973, 95, 5813 CrossRef CAS.
  18. A. K. Saksena and P. Mangiaracina, Tetrahedron Lett., 1983, 24, 273 CrossRef CAS; M. D. Turnbull, G. Hatter and D. E. Ledgerwood, Tetrahedron Lett., 1984, 25, 5449 CrossRef CAS.
  19. S. V. Ley and M. Mahon, Tetrahedron Lett., 1981, 22, 4747 CrossRef CAS.
  20. M. Franck-Neumann and C. Berger, Bull. Soc. Chim. Fr., 1968, 4067 CAS; A. W. Johnson, G. Gowda, A. Hassanali, J. Knox, S. Monaco, Z. Razavi and G. Roseberry, J. Chem. Soc., Perkin Trans. 1, 1981, 1734 RSC.
  21. S. Katsumura, K. Hori, S. Fugiwara and S. Isoe, Tetrahedron Lett., 1985, 26, 4625 CrossRef CAS.
  22. B. M. Trost, T. N. Saltzman and K. Hiroi, J. Am. Chem. Soc., 1976, 98, 4887 CrossRef CAS.
  23. O. S. Mills, P. G. Steel, E. R. Parmee and E. J. Thomas, J. Chem. Soc., Perkin Trans. 1, 1997, 391 RSC.
  24. P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declerq and M. M. Woolfson, MULTAN80, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, Universities of York, UK and Louvain, Belgium, 1980.
Click here to see how this site uses Cookies. View our privacy policy here.