Exploitation of differential reactivity of the carbon–chlorine bonds in 1,3-dichloroisoquinoline. Routes to new N,N-chelate ligands and 1,3-disubstituted isoquinolines

(Note: The full text of this document is currently only available in the PDF Version )

Alan Ford, Ekkehard Sinn and Simon Woodward


Abstract

Under Pd(PPh3)4 catalysis, coupling of arylboronic acids to the 1-position of 1,3-dichloroisoquinoline takes place, leading exclusively to 1-aryl-3-chloroisoquinolines. This regiochemistry is demonstrated by the crystal structure of 3-chloro-1-(8-methoxy-1-naphthyl)isoquinoline. The 3-chloro group may be modified by nickel-catalysed reaction with Grignard reagents or direct nucleophilic displacement with LiSCH2Ph. Attempted lithiation of the 3-position is not successful (either deprotonation or complex reactivity results). Under zinc reduction in the presence of NiCl2–PPh3 and NaI, the 1-aryl-3-chloroisoquinolines furnish 3,3′-biisoquinolines in good yield.


References

  1. A. Togni and L. M. Venanzi, Agnew. Chem., Int. Ed. Engl., 1994, 33, 497 Search PubMed.
  2. P. H. J. Carlson, T. Katsuki, V. S. Martin and K. B. Sharpless, J. Org. Chem., 1981, 46, 3936 CrossRef CAS.
  3. A. J. Bailey, W. P. Griffith, A. J. P. White and D. J. Williams, J. Chem. Soc., Chem. Commun., 1994, 1833 RSC.
  4. C. Eskernazi, G. Balavoine, F. Meunier and H. Rivière, J. Chem. Soc., Chem. Commun., 1985, 111 Search PubMed.
  5. A. Ford, E. Sinn and S. Woodward, J. Organomet. Chem., 1995, 493, 215 CrossRef CAS.
  6. S. Bennet, S. M. Brown, G. Conole, M. Kessler, S. Rowling, E. Sinn and S. Woodward, J. Chem. Soc., Dalton Trans., 1995, 367 RSC.
  7. M. M. Robison, J. Am. Chem. Soc., 1958, 80, 5481 CrossRef CAS.
  8. G. Simchen, Agnew. Chem., Int. Ed. Engl., 1966, 5, 663 Search PubMed.
  9. G. Simchen and W. Krämer, Chem. Ber., 1969, 102, 3666 CAS.
  10. S. W. Wright, D. L. Hageman and L. D. McClure, J. Org. Chem., 1994, 59, 6095 CrossRef CAS.
  11. J. R. Pedersen, Acta Chem. Scand., Ser. A, 1974, 28, 213 CAS.
  12. M. Hird, G. W. Gray and K. J. Toyne, Mol. Cryst. Liq. Cryst., 1991, 206, 187 CrossRef CAS.
  13. N. W. Alcock, J. M. Brown and D. I. Humes, Tetrahedron: Asymmetry, 1993, 4, 743 CrossRef CAS.
  14. J.-M. Valk, T. D. W. Claridge and J. M. Brown, Tetrahedron: Asymmetry, 1995, 6, 2597 CrossRef CAS.
  15. L.-L. Gundersen, G. Langli and F. Rise, Tetrahedron Lett., 1995, 36, 1945 CrossRef CAS.
  16. I. Mangalagiu, T. Beneche and K. Undheim, Tetrahedron Lett., 1996, 37, 1309 CrossRef CAS.
  17. N. Miyaura, T. Ishiyama, H. Sasaki, M. Ishikawa, M. Satoh and A. Suzuki, J. Am. Chem. Soc., 1989, 111, 314 CrossRef.
  18. M. Kranz, T. Clark and P. Von Rague, J. Org. Chem., 1993, 58, 3317 CrossRef CAS.
  19. I. Colon and D. R. Kelsey, J. Org. Chem., 1986, 51, 2627 CrossRef CAS.
  20. M. Iyoda, H. Otsuka, K. Sato, N. Nisato and M. Oda, Bull. Chem. Soc. Jpn., 1990, 63, 80 CAS.
  21. Y. Yamamoto and A. Yanagi, Chem. Pharm. Bull., 1982, 30, 1731 CAS.
  22. J. R. Blackhouse, H. M. Lowe, E. Sinn, S. Suzuki and S. Woodward, J. Chem. Soc., Dalton Trans., 1995, 1489 RSC.
  23. P. W. R. Corfield, R. J. Doedens and J. A. Ibers, Inorg. Chem., 1967, 6, 197 CrossRef CAS.
  24. C. J. Gilmore, J. Appl. Crystallogr., 1984, 17, 42 CrossRef CAS.