Asymmetric synthesis of 5,5-disubstituted thiotetronic acids using an allyl xanthate to dithiocarbonate rearrangement: total synthesis of (5S)-thiolactomycin with revision of the absolute configuration of the natural

(Note: The full text of this document is currently only available in the PDF Version )

Mark S. Chambers and Eric J. Thomas


Abstract

An asymmetric synthesis of thiotetronic acids related to the antibiotics thiolactomycin 1 and thiotetromycin 2 has been developed in which the key step is a stereoselective [3.3]-rearrangement of an allyl xanthate to the corresponding dithiocarbonate. Thus, the xanthates (S)- and (R)-19 are rearranged efficiently to the dithiocarbonates (S)- and (R)-20. Hydrolysis of the dithiocarbonates with in situ S-alkylation gives the thioethers (S)- and (R)-22 which are converted into the acyl imidazolides (S)- and (R)-27. These are used to acylate methyl propanoate, methyl phenylacetate and ethyl acetate to give the keto esters 28–30 which are converted into the thiotetronic acids 31–33 by deprotection using trifluoroacetic acid–anisole. The 3-phenylthiotetronic acid 32 is completely enolic in both [2H]chloroform and [2H6]dimethyl sulfoxide, but 15% of the keto tautomer 40 of the 3-methyl compound 31 is present in [2H]chloroform. The 3-unsubstituted thiotetronic acid 33 is 100% enolic in [2H6]dimethyl sulfoxide and exists completely as the keto tautomer 41 in [2H]chloroform.Ozonolysis of the thioether (S)-22 gives the aldehyde 45 which is converted into the diene 42. Hydroboration–oxidation of this diene gives the alcohol 79 which is converted into the selenide 80. This is taken through to the thiotetronic acid 85, which via selective Se-methylation and base-induced elimination gives (5S)-thiolactomycin (S)-1. This is laevorotatory and hence is the enantiomer of the natural product which must therefore be the (5R)-enantiomer (R)-1.


References

  1. H. Sasaki, H. Oishi, T. Hayashi, I. Matsuura, K. Ando and M. Sawada, J. Antibiotics, 1982, 35, 396 CAS; T. Noto, S. Miyakawa, H. Oishi, H. Endo and H. Okazaki, J. Antibiotics, 1982, 35, 401 CAS; S. Miyakawa, K. Suzuki, T. Noto, Y. Harada and H. Okazaki, J. Antibiotics, 1982, 35, 411 CAS; T. Hayashi, O. Yamamoto, H. Sasaki and H. Okazaki, J. Antibiotics, 1984, 37, 1456 CAS.
  2. S. Omura, A. Nakagawa, R. Iwata and A. Hatano, J. Antibiotics, 1983, 36, 1781 CAS; S. Omura, Y. Iwai, A. Nakagawa, R. Iwata, Y. Takahashi, H. Shimizu and T. Tanaka, J. Antibiotics, 1983, 36, 109 CAS.
  3. T. Sato, K. Suzuki, S. Kadota, K. Abe, S. Takamura and M. Iwanami, J. Antibiotics, 1989, 42, 890 CAS.
  4. C. Rapp, G. Jung, C. Isselhorst-Scharr and H. Zahner, Annalen, 1988, 1043 Search PubMed.
  5. L. A. Dolak, T. M. Castle, S. E. Truesdell and O. K. Sebek, J. Antibiotics, 1986, 39, 26 CAS.
  6. E. Benary, Berichte, 1913, 46, 2103 Search PubMed.
  7. J. Z. Mortensen, B. Hedegaard and S.-O. Lawesson, Tetrahedron, 1971, 27, 3839 CrossRef.
  8. D. M. O'Mant, J. Chem. Soc. C, 1968, 1501 RSC.
  9. K. Tsuzuki and S. Omura, J. Antibiotics, 1983, 36, 1589 CAS.
  10. J. Brennan and P. J. Murphy, Tetrahedron Lett., 1988, 29, 2063 CrossRef CAS.
  11. C.-L. J. Wang and J. M. Salvino, Tetrahedron Lett., 1984, 25, 5243 CrossRef CAS.
  12. Preliminary communication: M. S. Chambers, E. J. Thomas and D. J. Williams, J. Chem. Soc., Chem. Commun., 1987, 1228 Search PubMed.
  13. Preliminary communication: M. S. Chambers and E. J. Thomas, J. Chem. Soc., Chem. Commun., 1989, 23 Search PubMed.
  14. T. Taguchi, Y. Kawazoe, K. Yoshihira, H. Kanayama, M. Mori, K. Tabata and K. Harano, Tetrahedron Lett., 1965, 2717 CrossRef CAS; S. G. Smith, J. Am. Chem. Soc., 1961, 83, 4285 CrossRef CAS; R. J. Ferrier and N. Vethaviyasar, J. Chem. Soc., Chem. Commun., 1970, 1385 RSC; K. Harano and T. Taguchi, Chem. Pharm. Bull., 1972, 20, 2357 CAS; T. Nakai and A. Ari-izumi, Tetrahedron Lett., 1976, 2335 CrossRef CAS; Y. Ueno, H. Sano and M. Okawara, Tetrahedron Lett., 1980, 21, 1767 CrossRef CAS.
  15. M. Hirama, T. Shigemoto and S. Ito, J. Org. Chem., 1987, 52, 3342 CrossRef CAS.
  16. O. Mitsunobu, Synthesis, 1981, 1 CrossRef CAS.
  17. J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, 34, 2543 CrossRef CAS.
  18. S. Akabori, S. Sakakibara, Y. Shimonishi and Y. Nobuhara, Bull. Chem. Soc. Jpn., 1964, 37, 433 CAS.
  19. S. Trippett and D. M. Walker, J. Chem. Soc., 1961, 1266 RSC.
  20. R. H. Schlessinger, M. A. Poss, S. Richardson and P. Lin, Tetrahedron Lett., 1985, 26, 2391 CrossRef CAS.
  21. O. Nishimura, C. Kitada and M. Fujino, Chem. Pharm. Bull., 1978, 26, 1576 CAS.
  22. B. H. Lipshutz and J. J. Pegram, Tetrahedron Lett., 1980, 21, 3343 CrossRef CAS.
  23. E. J. Corey, J.-L. Gras and P. Ulrich, Tetrahedron Lett., 1976, 809 CrossRef CAS.
  24. D. J. Faulkner and M. R. Petersen, J. Am. Chem. Soc., 1973, 95, 553 CrossRef CAS.
  25. P. L. Stotter and K. A. Hill, Tetrahedron Lett., 1975, 1679 CrossRef CAS.
  26. R. A. Bell and M. B. Gravestock, Can. J. Chem., 1969, 47, 2099 CAS.
  27. H. Bauer, Berichte, 1913, 46, 92 Search PubMed; S. Uemura, A. Toshimitsu, M. Okano and K. Ichikawa, Bull. Chem. Soc. Jpn., 1975, 48, 1925 CAS.
  28. P. A. Grieco, S. Gilman and M. Nishizawa, J. Org. Chem., 1976, 41, 1485 CrossRef CAS.
  29. R. Walter and J. Roy, J. Org. Chem., 1971, 36, 2561 CrossRef CAS; K. B. Sharpless, M. W. Young and R. F. Lauer, Tetrahedron Lett., 1973, 1979 CrossRef CAS; K. B. Sharpless and R. F. Lauer, J. Am. Chem. Soc., 1973, 95, 2697 CrossRef CAS; C. A. Wilson, II and T. A. Bryson, J. Org. Chem., 1975, 40, 800 CrossRef.
  30. H. J. Reich and F. Chow, J. Chem. Soc., Chem. Commun., 1975, 790 RSC; H. J. Reich and S. K. Shah, J. Am. Chem. Soc., 1975, 97, 3250 CrossRef CAS; H. J. Reich and J. M. Renga, J. Org. Chem., 1975, 40, 3313 CrossRef CAS.
  31. P. G. Gassman, T. Miura and A. Mossman, J. Org. Chem., 1982, 47, 954 CrossRef CAS.
  32. S. Halazy and A. Krief, Tetrahedron Lett., 1979, 4233 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.