Acidity effect in the regiochemical control of the alkylation of phenol with alkenes

(Note: The full text of this document is currently only available in the PDF Version )

Giovanni Sartori, Franca Bigi, Raimondo Maggi and Attilio Arienti


Abstract

Treatment of 1∶1 mixtures of phenol and linear alkenes in the presence of an acidic promoter in CHCl3 at room temperature results in ortho-regioselective monoalkylation producing sec-alkylphenols in 48–60% yield. In similar reactions, branched alkenes lead exclusively to the corresponding para-tert-alkylphenols in 80–85% yield. Addition of increasing amounts of potassium phenolate to the reacting system reduces the protic acidity and promotes ortho-regioselective tert-alkylation. These results are tentatively explained in terms of competition of ‘H-bond-template’ and ‘charge-controlled’ mechanisms.


References

  1. (a) G. A. Olah, Angew. Chem., Int. Ed. Engl., 1973, 12, 173 CrossRef ; (b) R. M. Roberts and A. A. Khalaf, Friedel-Crafts Alkylation Chemistry, M. Dekker Inc., New York, 1984 Search PubMed ; (c) A. Iraqi, R. Gallo and R. Phan Tan Luu, Bull. Soc. Chim. Fr., 1988, 548 CAS ; (d) R. Taylor, Electrophilic Aromatic Substitution, Wiley, New York, 1990 Search PubMed .
  2. (a) G. Sartori, F. Bigi, G. Casiraghi, G. Casnati, L. Chiesi and A. Arduini, Chem. Ind. (London), 1985, 762 CAS ; (b) G. A. Olah, R. Krishnamurti and G. K. Surya Prakash, Friedel-Crafts Alkylations, in Comprehensive Organic Synthesis, B. M. Trost, I. Fleming eds, Pergamon Press, Oxford, 1991, vol. 3, pp. 292–339 Search PubMed ; (c) J. Tateiwa, T. Nishimura, H. Horiuchi and S. Uemura, J. Chem. Soc., Perkin Trans. 1, 1994, 3367 RSC ; (d) P. E. Gheorhiou and M. Ashram, J. Org. Chem., 1995, 60, 2909 CrossRef ; (e) M. Yamaguchi, A. Hayashi and M. Hirama, J. Am. Chem. Soc., 1995, 117, 1151 CrossRef CAS ; (f) T. Kondo, S. Kajiya, S. Tantayanon and Y. Watanabe, J. Organomet. Chem., 1995, 489, 83 CrossRef CAS .
  3. (a) A. J. Kolka, J. P. Napolitano, A. H. Filbey and G. G. Ecke, J. Org. Chem., 1957, 22, 462 ; (b) Ya. B. Kozlekovskii, V. A. Koshchii and T. F. Ovsiyuk, Zh. Org. Khim, 1989, 25, 55 ; (c) J. A. M. Laan, F. L. L. Giesen and J. P. Ward, Chem. Ind (London), 1989, 354 CAS .
  4. G. Casnati, G. Casiraghi, A. Pochini, G. Sartori and R. Ungaro, Pure Appl. Chem., 1983, 55, 1677 CAS .
  5. G. Casiraghi, G. Casnati, G. Sartori and L. Bolzoni, J. Chem. Soc., Perkin Trans. 1, 1979, 2027 RSC .
  6. G. Sartori, G. Casnati, F. Bigi and G. Predieri, J. Org. Chem., 1990, 55, 4371 CrossRef CAS .
  7. F. Bigi, R. Maggi, G. Sartori, G. Casnati and G. Bocelli, Gazz. Chim. Ital., 1992, 122, 283 CAS .
  8. (a) N. B. Nevrekar, S. R. Sawardekar, T. S. Paudit and N. A. Kudav, Chem. Ind., 1983, 206 Search PubMed ; (b) M. Bataille and J. Landais, C.R. Acad. Sci. (Paris), 1973, 276, 1305 Search PubMed .
  9. G. Sartori, F. Bigi, R. Maggi and C. Porta, Tetrahedron Lett., 1994, 35, 7073 CrossRef CAS .
  10. P. G. Duggan and W. S. Murphy, J. Chem. Soc., Perkin Trans. 2, 1975, 1291 RSC .
  11. (a) D. V. Banthorpe, Chem. Rev., 1970, 70, 295 CrossRef CAS ; (b) K. Norrman and T. B. McMahon, J. Am. Chem. Soc., 1996, 118, 2449 CrossRef CAS .
  12. G. G. S. Dutton, M. E. D. Hillman and J. G. Moffatt, Can. J. Chem., 1964, 42, 482 CAS .
  13. Röhm & Hass Co., U.S.P. 2098203, 1937(Chemisches Zentralblatt, 1938, I, 1457) Search PubMed .
  14. S. Skraup and W. Beifuss, Chem. Ber., 1927, 60, 1070 Search PubMed .
  15. W. Schrauth and K. Quasebarth, Chem. Ber., 1924, 57, 857 Search PubMed .
Click here to see how this site uses Cookies. View our privacy policy here.