Acidity effect in the regiochemical control of the alkylation of phenol with alkenes

(Note: The full text of this document is currently only available in the PDF Version )

Giovanni Sartori, Franca Bigi, Raimondo Maggi and Attilio Arienti


Abstract

Treatment of 1∶1 mixtures of phenol and linear alkenes in the presence of an acidic promoter in CHCl3 at room temperature results in ortho-regioselective monoalkylation producing sec-alkylphenols in 48–60% yield. In similar reactions, branched alkenes lead exclusively to the corresponding para-tert-alkylphenols in 80–85% yield. Addition of increasing amounts of potassium phenolate to the reacting system reduces the protic acidity and promotes ortho-regioselective tert-alkylation. These results are tentatively explained in terms of competition of ‘H-bond-template’ and ‘charge-controlled’ mechanisms.


References

  1. (a) G. A. Olah, Angew. Chem., Int. Ed. Engl., 1973, 12, 173 CrossRef; (b) R. M. Roberts and A. A. Khalaf, Friedel-Crafts Alkylation Chemistry, M. Dekker Inc., New York, 1984 Search PubMed; (c) A. Iraqi, R. Gallo and R. Phan Tan Luu, Bull. Soc. Chim. Fr., 1988, 548 CAS; (d) R. Taylor, Electrophilic Aromatic Substitution, Wiley, New York, 1990 Search PubMed.
  2. (a) G. Sartori, F. Bigi, G. Casiraghi, G. Casnati, L. Chiesi and A. Arduini, Chem. Ind. (London), 1985, 762 CAS; (b) G. A. Olah, R. Krishnamurti and G. K. Surya Prakash, Friedel-Crafts Alkylations, in Comprehensive Organic Synthesis, B. M. Trost, I. Fleming eds, Pergamon Press, Oxford, 1991, vol. 3, pp. 292–339 Search PubMed; (c) J. Tateiwa, T. Nishimura, H. Horiuchi and S. Uemura, J. Chem. Soc., Perkin Trans. 1, 1994, 3367 RSC; (d) P. E. Gheorhiou and M. Ashram, J. Org. Chem., 1995, 60, 2909 CrossRef; (e) M. Yamaguchi, A. Hayashi and M. Hirama, J. Am. Chem. Soc., 1995, 117, 1151 CrossRef CAS; (f) T. Kondo, S. Kajiya, S. Tantayanon and Y. Watanabe, J. Organomet. Chem., 1995, 489, 83 CrossRef CAS.
  3. (a) A. J. Kolka, J. P. Napolitano, A. H. Filbey and G. G. Ecke, J. Org. Chem., 1957, 22, 462; (b) Ya. B. Kozlekovskii, V. A. Koshchii and T. F. Ovsiyuk, Zh. Org. Khim, 1989, 25, 55; (c) J. A. M. Laan, F. L. L. Giesen and J. P. Ward, Chem. Ind (London), 1989, 354 CAS.
  4. G. Casnati, G. Casiraghi, A. Pochini, G. Sartori and R. Ungaro, Pure Appl. Chem., 1983, 55, 1677 CAS.
  5. G. Casiraghi, G. Casnati, G. Sartori and L. Bolzoni, J. Chem. Soc., Perkin Trans. 1, 1979, 2027 RSC.
  6. G. Sartori, G. Casnati, F. Bigi and G. Predieri, J. Org. Chem., 1990, 55, 4371 CrossRef CAS.
  7. F. Bigi, R. Maggi, G. Sartori, G. Casnati and G. Bocelli, Gazz. Chim. Ital., 1992, 122, 283 CAS.
  8. (a) N. B. Nevrekar, S. R. Sawardekar, T. S. Paudit and N. A. Kudav, Chem. Ind., 1983, 206 Search PubMed; (b) M. Bataille and J. Landais, C.R. Acad. Sci. (Paris), 1973, 276, 1305 Search PubMed.
  9. G. Sartori, F. Bigi, R. Maggi and C. Porta, Tetrahedron Lett., 1994, 35, 7073 CrossRef CAS.
  10. P. G. Duggan and W. S. Murphy, J. Chem. Soc., Perkin Trans. 2, 1975, 1291 RSC.
  11. (a) D. V. Banthorpe, Chem. Rev., 1970, 70, 295 CrossRef CAS; (b) K. Norrman and T. B. McMahon, J. Am. Chem. Soc., 1996, 118, 2449 CrossRef CAS.
  12. G. G. S. Dutton, M. E. D. Hillman and J. G. Moffatt, Can. J. Chem., 1964, 42, 482 CAS.
  13. Röhm & Hass Co., U.S.P. 2098203, 1937(Chemisches Zentralblatt, 1938, I, 1457) Search PubMed.
  14. S. Skraup and W. Beifuss, Chem. Ber., 1927, 60, 1070 Search PubMed.
  15. W. Schrauth and K. Quasebarth, Chem. Ber., 1924, 57, 857 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.