Preparation and structure–chiroptical relationships of tartaric acid-based layer-block chiral dendrimers

(Note: The full text of this document is currently only available in the PDF Version )

Hak-Fun Chow and Chi Ching Mak


Abstract

Two optically active, diastereoisomeric, first generation layer-block dendrimers 1 and 2 have been prepared by a convergent synthetic procedure. These chiral, layer-block dendrimers utilize 4-tert-butylphenoxy moieties as the surface groups and phloroglucinol as the branching junctures. Two different chiral units, which are derivatives of (D)- and (L)-tartaric acid, serve as the chiral linkers between the surface group and the branching juncture, or between two branching junctures. The first layer-block dendrimer 1 has an outer chiral layer made up of six (L)-tartrate derived units and an inner chiral layer of three (D)-tartrate derived units. The second layer-block dendrimer 2 has an outer shell consisting of three (D)- and three (L)-chiral units and an inner shell of three (D)-chiral units. The molar rotation of these structurally flexible, low generation dendritic compounds is proportional to the number of chiral tartrate units in excess, with the chiroptical effect of a (D)-tartrate derived chiral unit cancelling that of an (L)-tartrate derived unit on a 1∶1 basis. Circular dichroism studies, however, reveal that this cancellation effect is more effective when both the (D)- and (L)-chirons are situated within the same layer.


References

  1. For reviews see, D. A. Tomalia, A. M. Naylor and W. A. Goddard, III, Angew. Chem., Int. Ed. Engl., 1990, 29, 138 Search PubMed; D. A. Tomalia and H. D. Durst, Top. Curr. Chem., 1993, 165, 193 CrossRef; J. Issberner, R. Moors and F. Vögtle, Angew. Chem., Int. Ed. Engl., 1994, 33, 2413 CAS.
  2. For examples, see (a) D. N. Posnett, H. McGrath and J. P. Tam, J. Biol. Chem., 1988, 263, 1719 CAS; (b) J. P. Tam, Proc. Natl. Acad. Sci. USA, 1988, 85, 5409 CAS; (c) J. P. Tam and Y.-A. Yu, Proc. Natl. Acad. Sci. USA, 1989, 86, 9084 CAS; (d) C. Y. Wang, D. J. Looney, M. L. Li, A. M. Walfield, J. Ye, B. Hosein, J. P. Tam and F. Wong-Staal, Science, 1991, 254, 285 CAS; (e) G. R. Newkome, X. Lin and C. D. Weis, Tetrahedron: Asymmetry, 1991, 2, 957 CrossRef CAS; (f) R. H. E. Hudson and M. J. Damha, J. Am. Chem. Soc., 1993, 115, 2119 CrossRef CAS; (g) R. Roy, D. Zanini, S. J. Meunier and A. Romanowska, J. Chem. Soc., Chem. Commun., 1993, 1869 RSC; (h) J. Shao and J. P. Tam, J. Am. Chem. Soc., 1995, 117, 3893 CrossRef CAS; (i) J. F. G. A. Jansen, H. W. I. Peerlings, E. M. M. de Brabander-Van den Berg and E. W. Meijer, Angew. Chem., Int. Ed. Engl., 1995, 34, 1206 CrossRef CAS.
  3. D. Seebach, J.-M. Lapierre, K. Skobridis and G. Greiveldinger, Angew. Chem., Int. Ed. Engl., 1994, 33, 440 CrossRef; P. Murer and D. Seebach, Angew. Chem., Int. Ed. Engl., 1995, 34, 2116 CrossRef CAS.
  4. H.-F. Chow, L. F. Fok and C. C. Mak, Tetrahedron Lett., 1994, 35, 3547 CrossRef CAS; H.-F. Chow and C. C. Mak, J. Chem. Soc., Perkin Trans. 1, 1994, 2223 RSC.
  5. C. C. Mak and H.-F. Chow, Chem. Commun., 1996, 1185 RSC.
  6. C. J. Hawker and J. M. J. Fréchet, J. Am. Chem. Soc., 1990, 112, 7638 CrossRef CAS.
  7. Compound 5 was prepared from (D)-tartaric acid by the methods described for its antipode, see E. A. Mash, K. A. Nelson, S. van Deusen and S. B. Hemperly, Org. Synth., 1990, 68, 92 Search PubMed; T. Morimoto, M. Chiba and K. Achiwa, Tetrahedron, 1993, 49, 1793 CAS.
  8. Compound 12, the enantiomer of compound 10, was prepared from mono-O-arylation of the ditosyl compound 5 with 4-tert-butylphenol according to the procedure described for 10, see ref. 4.
  9. H.-F. Chow, I. Y.-K. Chan, C. C. Mak and M.-K. Ng, Tetrahedron, 1996, 52, 4277 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.