The phototransformation of 5-tert-butyl-2′-deoxyuridine: an approach to the synthesis of new 1,2-dihydrocyclobuta[d[hair space]]pyrimidin-2-ones1

(Note: The full text of this document is currently only available in the PDF Version )

Ivan Basnak, Denise McKinnell, Neil Spencer, Ayla Balkan, Peter R. Ashton and Richard T. Walker


Abstract

A new type of 2-oxo-1,2-dihydrocyclobuta[d]pyrimidin-1-yl-2′- deoxynucleoside 2a is obtained in 52% yield upon irradiation of aqueous solutions of 5-tert-butyl-2′-deoxyuridine 1a with short wavelength (254 nm) UV light. The identity and structure of the photoproduct is unequivocally established by 1H and 13C NMR (including a 2D INADEQUATE experiment), mass and UV spectroscopy. This new phototransformation represents an alternative route for the photolysis of 5-alkyl-substituted uracil derivatives where the side chain has more than one carbon atom. A mechanism for the phototransformation of compound 1a into 2a is proposed, and this requires the creation of a cyclobutanol-type intermediate (type-II photoprocess). A general pathway of UV-induced photolysis of 5-alkyl-substituted uracil derivatives (other than 5-methyl substituted) into 1,2-dihydrocyclobuta[d]pyrimidin-2-ones and photohydrated uracils is proposed.


References

  1. Presented in part at the Nucleic Acids Symposium, Noordwijkerhout, The Netherlands, 6–11 August 1995.
  2. I. Basnak, A. Balkan, P. L. Coe and R. T. Walker, Nucleosides, Nucleotides, 1994, 13, 177 CAS.
  3. H. Görner, J. Photochem. Photobiol. B: Biol., 1991, 10, 91 CrossRef.
  4. J. Cadet, L. S. Kan and S. Y. Wang, J. Am. Chem. Soc., 1978, 100, 6715 CrossRef CAS.
  5. (a) E. Fahr, Angew. Chem., Int. Ed. Engl., 1969, 8, 578 CrossRef CAS; (b) G. J. Fisher and H. E. Johns, in Photochemistry and Photobiology of Nucleic Acid, ed. S. Y. Wang, Academic Press, New York, 1976, vol. 1, p. 225 Search PubMed; (c) C. Cadet, in Bioorganic Photochemistry, ed. H. Morrison, John Wiley and Sons, New York, 1990, vol. 1, 272 Search PubMed.
  6. T. Carrel, Angew. Chem., Int. Ed. Engl., 1995, 34, 2491 CrossRef.
  7. I. Pietrzykowska and D. Shugar, Science, 1968, 161, 1248 CAS.
  8. I. Pietrzykowska and D. Shugar, Acta Biochim. Pol., 1970, 17, 361 Search PubMed.
  9. E. Krajewska and D. Shugar, Acta Biochim. Pol., 1972, 19, 207 Search PubMed.
  10. E. Sztumpf-Kulikowska and D. Shugar, Acta Biochim. Pol., 1974, 21, 73 Search PubMed.
  11. D. B. Davies, Prog. Nucl. Magn. Reson. Spectrosc., 1978, 12, 135 CrossRef CAS.
  12. P. C. Srivastava, R. K. Robins, F. Takusagawa and H. M. Berman, J. Heterocycl. Chem., 1981, 18, 1659 CAS.
  13. H. Rosemeyer, G. Tóth, B. Golankiewicz, Z. Kazimierczuk, W. Bourgeois, U. Kretschmer, H. P. Muth and F. Seela, J. Org. Chem., 1990, 55, 5784 CrossRef CAS.
  14. G. Dyker, Angew. Chem., Int. Ed. Engl., 1944, 33, 103.
  15. H. Günther and W. Herrig, J. Am. Chem. Soc., 1975, 97, 5594 CrossRef.
  16. (a) P. J. Wagner, in Rearrangement in Ground and Excited States, ed. P. De Mayo, Academic Press, New York, 1980, vol. 1, 381 Search PubMed; (b) P. J. Wagner, Acc. Chem. Res., 1971, 4, 168 CrossRef CAS; (c) N. J. Turro, J. C. Dalton, K. Dawes, G. Farrington, R. Hautala, D. Morton, M. Niemczyk and N. Shore, Acc. Chem. Res., 1972, 5, 92 CrossRef CAS; (d) J. C. Scaiano, Acc. Chem. Res., 1982, 15, 252 CrossRef CAS.
  17. P. J. Wagner and J. M. McGrath, J. Am. Chem. Soc., 1972, 94, 3849 CrossRef CAS.
  18. F. D. Lewis and T. A. Hilliard, J. Am. Chem. Soc., 1973, 95, 5973 CrossRef CAS.
  19. (a) P. J. Wagner, Acc. Chem. Res., 1983, 16, 461 CrossRef CAS; (b) A. Padwa and D. J. Eastman, J. Am. Chem. Soc., 1969, 91, 462 CrossRef CAS.
  20. C. W. Carter, personal communication, 1995.
  21. (a) J. J. McCormack, V. E. Marquez, P. S. Liu, D. T. Vistica and J. S. Driscoll, Biochem. Pharmacol., 1980, 29, 830 CrossRef CAS; (b) A. Holy, A. Ludzisa, I. Votruba, K. Sediva and H. Pischel, Collect. Czech. Chem. Commun., 1985, 50, 393 CAS.
  22. C. Le Coq and J. Y. Lallemand, J. Chem. Soc., Chem. Commun., 1981, 150 RSC.
  23. (a) D. Neuhaus, J. Magn. Reson., 1983, 53, 109 CAS; (b) M. Kinns and J. K. M. Sanders, J. Magn. Reson., 1984, 56, 518 CAS.
  24. W. P. Ane, E. Bartholdi and R. R. Ernst, J. Chem. Phys., 1976, 64, 2229 CrossRef CAS.
  25. A. Bax and S. Subramanian, J. Magn. Reson., 1986, 67, 565 CAS.
  26. A. Bax and M. F. Summers, J. Am. Chem. Soc., 1986, 108, 2093 CrossRef CAS.
  27. A. Bax, R. Freeman, T. A. Frenkiel and M. H. Levitt, J. Magn. Reson., 1980, 43, 478.
  28. D. L. Turner, J. Magn. Reson., 1982, 49, 175 CAS.
  29. T. H. Mareci and R. Freeman, J. Magn. Reson., 1982, 48, 158.
  30. It has recently been reported that a pulsed field gradient technique, when incorporated into the INADEQUATE experiment, can double the sensitivity of the experiment. See: N. C. Nielsen, H. Thørgersen and O. W. Sørensen, J. Am. Chem. Soc., 1995, 117, 11365 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.