Preparation of new 2,4-disubstituted oxazoles from N-acylaziridines

(Note: The full text of this document is currently only available in the PDF Version )

Frank W. Eastwood, Patrick Perlmutter and Qi Yang


Abstract

The efficiency of the ring enlargement of 2-substituted N-acylaziridines to dihydrooxazoles followed by nickel peroxide oxidation to give 2,4-disubstituted oxazoles as a synthetic route is examined. Sodium iodide-promoted ring enlargements work well for N-acylaziridines bearing electron-donating 2-substituents. For N-acylaziridines bearing electron-withdrawing 2-substituents, the best results are obtained using acid-promoted rearrangement.


References

  1. M. R. Kernan, T. F. Molinski and D. J. Faulkner, J. Org. Chem., 1988, 53, 5014 CrossRef CAS.
  2. For a recent review on the synthesis of bioactive marine cyclopeptides (which includes many oxazole-containing molecules) see P. Wipf, Chem. Rev., 1995, 95, 2115 Search PubMed For other recent synthetic studies see (a) G. Li, P. M. Warner and D. J. Jebaratnam, J. Org. Chem., 1996, 61, 778 CrossRef CAS; (b) A. G. M. Barrett, Synlett, 1995, 415 CrossRef CAS; (c) R. Boyce, G. C. Mulqueen and G. Pattenden, Tetrahedron, 1995, 51, 7321 CrossRef CAS; (d) C. J. Moody, K. J. Doyle, M. C. Elliot and T. J. Mowlem, Pure Appl. Chem., 1994, 66, 2107 CrossRef CAS.
  3. (a) A. I. Meyers, G. Knaus, K. Kamata and M. E. Ford, J. Am. Chem. Soc., 1976, 98, 567 CrossRef CAS; (b) J. F. Hansen and C. S. Cooper, J. Org. Chem., 1976, 41, 3219 CrossRef CAS.
  4. D. L. Evans, D. K. Minster, U. Jordis, S. M. Hecht, A. L. Mazzu and A. I. Meyers, J. Org. Chem., 1979, 44, 497 CrossRef.
  5. (a) J. A. Deyrup, in Heterocyclic Compounds—Small Ring Heterocycles, ed. A. Hasser, Wiley, New York, 1983, vol. 42, p. 125 Search PubMed; (b) H. C. Van Der Plas, Ring Transformation of Heterocycles, Academic Press, London, 1973, vol. 1, p. 66 Search PubMed.
  6. J. W. Cornforth and R. H. Cornforth, J. Chem. Soc., 1947, 96 RSC.
  7. H. A. Vaccaro, D. E. Levy, A. Sawabe, T. Jaetsch and S. Masamune, Tetrahedron Lett., 1992, 33, 1937 CrossRef CAS.
  8. Z. Zhao, G. R. Scarlato and R. W. Armstrong, Tetrahedron Lett., 1991, 32, 1609 CrossRef CAS.
  9. P. B. Terentiev, A. N. Kost, N. P. Lomakina and V. G. Kartev, Org. Prep. Proced. Int., 1974, 6, 145.
  10. R. F. Cunico and C. P. Kuan, J. Org. Chem., 1992, 57, 3331 CrossRef CAS.
  11. (a) S.-K. Yoo, Tetrahedron Lett., 1992, 33, 2159 CrossRef CAS; (b) R. Connell, F. Scavo, P. Helquist and B. Åkermark, Tetrahedron Lett., 1986, 27, 5559 CrossRef CAS.
  12. For a preliminary communication of this work see F. W. Eastwood, P. Perlmutter and Q. Yang, Tetrahedron Lett., 1994, 34, 2039 Search PubMed.
  13. (a) F. W. Fowler, A. Hassner and L. A. Levy, J. Am. Chem. Soc., 1967, 89, 2077 CrossRef CAS; (b) A. Hassner, G. J. Matthews and F. W. Fowler, J. Am. Chem. Soc., 1969, 91, 5046 CrossRef.
  14. P. G. Mente, H. W. Heine and G. R. Scharoubim, J. Org. Chem., 1968, 33, 4547 CrossRef CAS.
  15. M. J. S. Dewar and I. J. Turchi, J. Org. Chem., 1975, 40, 1521 CrossRef CAS.
  16. D. Haidukewych and A. I. Meyers, Tetrahedron Lett., 1972, 30, 3031 CrossRef.
  17. For an alternative oxidation method see A. I. Meyers and F. Tavares, Tetrahedron Lett., 1994, 35, 2481 and 6800 Search PubMed.
  18. J. W. Cornforth, E. Fawaz, L. J. Goldsworthy and R. Robinson, J. Chem. Soc., 1949, 1549 RSC.
  19. M. J. Kukla and J. M. Fortunato, J. Org. Chem., 1984, 49, 5003 CrossRef CAS.
  20. E. A. Talley, A. S. Hunter and E. Yanovsky, J. Am. Chem. Soc., 1951, 73, 3528 CrossRef CAS.
  21. R. H. Hall and E. S. Stern, J. Chem. Soc., 1954, 3388 RSC.
  22. R. M. Coates and S. J. Hobbs, J. Org. Chem., 1984, 49, 146.
  23. P. J. Reider, R. S. E. Conn, P. Davis, V. J. Grenda, A. J. Zambito and E. J. J. Grabowski, J. Org. Chem., 1987, 52, 3326 CrossRef CAS.
  24. J. W. Cornforth and E. Cookson, J. Chem. Soc., 1952, 1085 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.