Halogen etching of group 13–15 (3–5) semiconductors and its relevance to chemical–mechanical polishing. The reactions of dibromine, dichlorine and sodium hypochlorite with gallium arsenide and related materials

(Note: The full text of this document is currently only available in the PDF Version )

Laurence Mcghee, Irene Nicol, Robert D. Peacock, Max I. Robertson, Paul R. Stevenson and John M. Winfield


Abstract

Room-temperature etching of gallium arsenide, gallium antimonide, indium phosphide, indium arsenide and indium antimonide by dibromine or dichlorine has been studied under anhydrous conditions using Raman spectroscopy to identify the primary products and radiotracers, [82Br] or [36Cl], to probe interactions among the species formed. Comparisons are drawn with etching behaviour in solution particularly with sodium hypochlorite towards GaAs for which the reactive species at pH<8.0 is shown to be Cl2 . Under anhydrous conditions the GaAs surface is passivated rapidly owing to the formation of an involatile liquid layer, believed to be a solution of Ga2Cl6 in AsCl3 . Above pH=8.0, where the dominant etchant is believed to be [OCl] , an active surface, in which considerable reconstruction has occurred, is formed. The etching behaviour has enabled the chemomechanical polishing of 13–15 semiconductors by Br2 and NaOCl based reagents to be rationalised. In particular, it is shown that the alumina component of a NaOCl-based polishing reagent has a minimal chemical role.


References

  1. Early work is reviewed in B. Tuck, J. Mater. Sci., 1975, 10, 321 Search PubMed; D. J. Stirland and B. W. Straughan, Thin Solid Films, 1976, 31, 139 CrossRef CAS.
  2. M. Balooch, D. R. Olander and W. J. Siekhaus, J. Vac. Sci. Technol. B, 1986, 4, 794 CrossRef CAS.
  3. C. L. French, W. S. Balch and J. S. Foord, J. Phys.: Condens. Matter., 1991, 3, S351 CrossRef CAS.
  4. T. Ohno, Phys. Rev. B., 1991, 44, 8387 CrossRef CAS.
  5. S. M. Mokler, P. R. Watson, L. Ungier and J. R. Arthur, J. Vac. Sci., Technol. B, 1992, 10, 2371 CrossRef CAS.
  6. A. Ludviksson, M. Xu and R. M. Martin, Surf. Sci., 1992, 277, 282 CrossRef CAS.
  7. C. Su, H.-q. Hou, G. H. Lee, Z.-G. Dai, W. Luo, M. F. Vernon and B. E. Bent, J. Vac. Sci. Technol. B, 1993, 11, 1222 CrossRef CAS.
  8. C. Su, M. Xi, Z.-G. Dai, M. F. Vernon and B. E. Bent, Surf. Sci., 1993, 282, 357 CrossRef CAS.
  9. D. Troost, H. J. Clemens, L. Koenders and W. Mönch, Surf. Sci., 1993, 286, 97 CrossRef CAS.
  10. D. K. Shuh, C. W. Lo, J. A. Yarmoff, A. Santoni, L. J. Terminello and F. R. McFeely, Surf. Sci., 1994, 303, 89 CrossRef CAS.
  11. Z. H. Lu, F. Chatenoud, M. M. Dion, M. J. Graham, H. E. Ruda, I. Koutzarrov, Q. Liu, C. E. Mitchell, I. G. Hill and A. B. McLean, Appl. Phys. Lett., 1995, 67, 670 CrossRef CAS.
  12. E. W. Jensen, Solid State Technol., 1973, 49 CAS.
  13. J. P. Contour, J. Massies and A. Saletes, Jpn. J. Appl. Phys., 1985, 24, L563.
  14. R. Sonnenfeld, J. Schneir, B. Drake, P. K. Hansma and D. E. Aspnes, Appl. Phys. Lett., 1987, 50, 1742 CrossRef CAS.
  15. V. S. Wang and R. J. Matyi, J. Appl. Phys., 1992, 72, 5158 CrossRef CAS; J. Electronic Mater., 1992, 21, 23 Search PubMed.
  16. C. G. Tuppen and B. H. Conen, J. Cryst. Growth, 1987, 80, 459 CrossRef CAS.
  17. B. H. Chin and K. L. Barlow, J. Electrochem. Soc., 1988, 135, 3120 CAS.
  18. E. Kurth, A. Reif, V. Gottschalch, J. Finster and E. Butter, Cryst. Res. Technol., 1988, 23, 117 CAS.
  19. B. H. Chin and K. L. Lee, J. Electrochem. Soc., 1990, 137, 663 CAS.
  20. M. Higuchi, J. Electrochem. Soc., 1989, 136, 2710 CAS.
  21. I. A. Sokolov, V. V. Kozlov and E. K. Varlashina, Poverkhnost, 1993, 6, 76 Search PubMed.
  22. I. A. Sokolov, V. V. Kozlov and A. K. Tkalich, Semicond. Sci. Technol., 1993, 8, 2184 CrossRef CAS.
  23. L. McGhee, S. G. McMeekin, I. Nicol, M. I. Robertson and J. M. Winfield, J. Mater. Chem., 1994, 4, 29 RSC.
  24. P. J. Caldwell, W. D. Laidig, Y. F. Lin, C. K. Peng, T. J. Magee and C. Leung, J. Appl. Phys., 1985, 57, 984 CrossRef CAS.
  25. F. G. Ciapetta and D. N. Wallace, Catal. Rev., 1971, 5, 67 Search PubMed; J. Thomson, G. Webb and J. M. Winfield, J. Mol. Catal., 1991, 67, 117 CrossRef CAS; A. Corma, V. Fornés and E. Ortega, J. Catal., 1985, 92, 284 CrossRef CAS; A. Bendada, G. Webb and J. M. Winfield, Eur. J. Solid State Inorg. Chem., 1996, 33, 907 CAS.
  26. A. S. Al-Ammar and G. Webb, J. Chem. Soc., Faraday Trans. 1, 1978, 74, 195 RSC.
  27. L. C. Adam, I. Fabian, K. Suzuki and G. Gordon, Inorg. Chem., 1992, 31, 3534 CrossRef CAS.
  28. D. G. Gorenstein, Prog. NMR Spectrosc., 1983, 16, 1 Search PubMed.
  29. K. B. Dillon, M. P. Nisbet and T. C. Waddington, Polyhedron, 1982, 1, 123 CrossRef CAS; K. B. Dillon, M. P. Nisbet and R. N. Reeve, Polyhedron, 1988, 7, 1725 CrossRef CAS.
  30. K. B. Dillon and A. W. G. Platt, Polyhedron, 1983, 2, 641 CrossRef CAS.
  31. N. N. Greenwood, P. G. Perkins and K. Wade, J. Chem. Soc., 1957, 4345 RSC.
  32. J. H. Scofield, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 129 CrossRef CAS.
  33. D. H. Templeton and G. F. Carter, J. Phys. Chem., 1954, 58, 940 CrossRef CAS.
  34. (a) D. S. Boyle and J. M. Winfield, J. Mater. Chem., 1996, 6, 227 RSC; (b) M. Beveridge, L. McGhee, S. G. McMeekin, M. I. Robertson, A. Ross and J. M. Winfield, J. Mater. Chem., 1994, 4, 119 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.