Supramolecular mesomorphic structures based on 2,5-dialkoxyterephthalicacid derivatives

(Note: The full text of this document is currently only available in the PDF Version )

Christian Meiners, Suresh Valiyaveettil, Volker Enkelmann and Klaus Müllen


Abstract

Self-assembly of 2,5-di-n-alkoxyterephthalic acids (CnOTpA) and 2,5-di-n-hexylterephthalic acid (C6TpA) as bifunctional hydrogen bond donors with bifunctional acceptors 1,3-diaminopropane (Dap), piperazine (Pip) and 4,4′-bipyridine (Bipy) has been investigated, both in the crystal lattice and in the mesophase. Stoichiometric mixtures of compounds CnOTpA with diamine Dap form mesophases with a lamellar-type structure and constitute, to the best of our knowledge, the first examples of the generation of mesophases from 2,5-di-n-alkoxyterephthalic acids and bifunctional diamines. The liquid crystalline behaviour of these mixtures was characterized using X-ray scattering, DSC and polarizing microscopy. The self-assembly of complexes C6TpA·Bipy and C6TpA·Pip in the crystal lattice was characterized using single crystal X-ray structural analysis. In the crystal lattice of C6TpA·Bipy, only hydrogen bonding interactions between the neutral acid and the base were observed. However, in the crystal structure of cocrystals of C6TpA with Pip, an ionic interaction was observed due to proton transfer from the acid group to the basic nitrogen atoms of the base.


References

  1. (a) D. Philp and J. F. Stoddart, Angew. Chem., 1996, 108, 1242 CrossRef; Angew. Chem., Int. Ed. Engl., 1996, 35, 1154 Search PubMed; (b) J.-M. Lehn, Supramolecular Chemistry, Concepts and Perspectives, VCH, Weinheim, 1995 Search PubMed; (c) G. M. Whitesides, J. P. Mathias and C. T. Seto, Science, 1991, 254, 1312 CrossRef CAS; (d) J. S. Lindsey, New J. Chem., 1991, 15, 153 CAS; (e) D. S. Lawrence, T. Jiang and M. Levett, Chem. Rev., 1995, 95, 2229 CrossRef CAS; (f) J. Fredericks, J. Yang, S. J. Geib and A. D. Hamilton, Proc. Ind. Acad. Sci. (Chem. Sci.), 1994, 106, 923 Search PubMed; (g) A. D. Burrows, C.-W. Chan, M. M. Chowdhry, J. E. McGrady and D. M. P. Mingos, Chem. Soc. Rev., 1995, 24, 329 RSC; (h) A. R. J. Sellens, P. J. I. Runciman, A. C. Griffin and E. S. Bryant, Mol. Cryst. Liq. Cryst., 1989, 166, 123.
  2. C. M. Paleos and D. Tsiourvas, Angew. Chem., 1995, 107, 1839 CrossRef; Angew. Chem., Int. Ed. Engl., 1995, 34, 1696 Search PubMed.
  3. C. G. Bazuin and A. Tork, Macromolecules, 1995, 28, 8877 CrossRef CAS.
  4. H. Ringsdorf, R. Wüstefeld, E. Zerta, M. Ebert and J. H. Wendorff, Angew. Chem., 1989, 101, 934 CAS; Angew. Chem., Int. Ed. Engl., 1989, 28, 914 Search PubMed.
  5. A. Liebmann, C. Mertesdorf, T. Plesnivy, H. Ringsdorf and J. H. Wendorff, Angew. Chem., 1991, 103, 1358 CAS; Angew. Chem., Int. Ed. Engl., 1991, 30, 1375 Search PubMed.
  6. (a) T. Kato and J. M. J. Fréchet, J. Am. Chem. Soc., 1989, 111, 8533 CrossRef CAS; (b) T. Kato, A. Fujishima and J. M. J. Fréchet, Chem. Lett., 1990, 919 CAS; (c) T. Kato, P. G. Wilson, A. Fujishima and J. M. J. Fréchet, Chem. Lett., 1990, 2003 CAS; (d) T. Kato, T. Uryu, F. Kaneuchi, C. Jin and J. M. J. Fréchet, Liq. Cryst., 1993, 14, 1311 CAS; (e) M. Fukumasa, T. Kato, T. Uryu and J. M. J. Fréchet, Chem. Lett., 1993, 65 CAS.
  7. (a) L. Y. Yu, Liq. Cryst., 1993, 14, 1303 CAS; (b) H. Kihara, T. Kato, T. Uryu, S. Ujiie, U. Kumar, J. M. J. Fréchet, D. W. Bruce and D. J. Price, Liq. Cryst., 1996, 21, 25 CAS; (c) T. Kato, H. Kihara, T. Uryu, S. Ujiie, K. Iimura, J. M. J. Fréchet and U. Kumar, Ferroelectrics, 1993, 148, 161 CAS.
  8. (a) T. Kato and J. M. J. Fréchet, Macromolecules, 1989, 22, 3818 CrossRef CAS; (b) T. Kato, M. Nakano, T. Moteki, T. Uryu and S. Ujiie, Macromolecules, 1995, 28, 8875 CrossRef CAS; (c) R. V. Tal'roze, S. A. Kuptsov, T. I. Sycheva, V. S. Bezborodov and N. A. Platé, Macromolecules, 1995, 28, 8689 CrossRef CAS; (d) C. G. Bazuin and A. Tork, Macromolecules, 1995, 28, 8877 CrossRef CAS.
  9. (a) C. Fouquey, J.-M. Lehn and A.-M. Levelut, Adv. Mater., 1990, 2, 254 CrossRef CAS; (b) J.-M. Lehn, M. Mascal, A. DeCian and J. Fischer, J. Chem. Soc., Chem. Commun., 1990, 479 RSC; (c) J.-M. Lehn, M. Mascal, A. DeCian and J. Fischer, J. Chem. Soc., Perkin Trans. 2, 1992, 461 RSC; (d) M. Kotera, J.-M. Lehn and J.-P. Vigneron, J. Chem. Soc., Chem. Commun., 1994, 197 RSC; (e) M. W. Hosseini, G. Brand, P. Schaeffer, R. Ruppert, A. De Cian and J. Fischer, Tetrahedron Lett., 1996, 37, 1405 CrossRef CAS; (f) M. W. Hosseini, R. Ruppert, P. Schaeffer, A. De Cian, N. Kyritsakas and J. Fischer, J. Chem. Soc., Chem. Commun., 1994, 2135 RSC.
  10. (a) P. K. Bhowmik, X. Wang and H. Han, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1995, 36(2), 124 Search PubMed; (b) P. K. Bhowmik, X. Wang, H. Han and A. M. Sarker, 324; (c) H. Han, A. H. Molla and P. K. Bhowmik, 332.
  11. (a) C. Alexander, C. P. Jariwala, C. M. Lee and A. C. Griffin, Macromol. Symp., 1994, 77, 283 CAS; (b) P. Bladon and A. C. Griffin, Macromolecules, 1993, 26, 6604 CrossRef CAS.
  12. J. J. Kane, R.-F. Liao, J. W. Lauher and F. W. Fowler, J. Am. Chem. Soc., 1995, 117, 12003 CrossRef CAS.
  13. The term ‘bifunctional’ implies that the self-assembling ‘monomer’ has two hydrogen bonding sites, which can be used to connect the molecule to two (complementary or self-complementary) units along a hydrogen-bonded chain.
  14. V. Enkelmann, S. Valiyaveettil, G. Moessner and K. Müllen, Supramol. Sci., 1995, 2, 3 CrossRef CAS.
  15. M. H. P. van Genderen, M. Pfaadt, C. Möller, S. Valiyaveettil and H. W. Spiess, J. Am. Chem. Soc., 1996, 118, 3661 CrossRef CAS; M. Pfaadt, G. Moessner, D. Pressner, S. Valiyaveettil, C. Boeffel, K. Müllen and H. W. Spiess, J. Mater. Chem., 1995, 5, 2265 RSC.
  16. (a) K. Eichhorst-Gerner, A. Stabel, G. Moessner, D. Declerq, S. Valiyaveettil, V. Enkelmann, K. Müllen and J. P. Rabe, Angew. Chem., 1996, 108, 1599; Angew. Chem., Int. Ed. Engl., 1996, 35, 1492 Search PubMed; (b) P. Vanoppen, P. C. M. Grim, M. Rücker, S. De Feyter, G. Moessner, S. Valiyaveettil, K. Müllen and F. C. De Schryver, J. Phys. Chem., 1996, 100(50), 19 636 CrossRef CAS.
  17. S. Valiyaveettil, G. Moessner, V. Enkelmann, C. Meiners, M. Pfaadt, H. W. Spiess and K. Müllen, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1996, 37(2), 817 Search PubMed.
  18. H. Günzler and H. Böck, IR-Spektroskopie, Verlag Chemie, Weinheim, 1983, pp. 218–219 Search PubMed.
  19. M. Hesse, H. Meier and B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, Georg Thieme Verlag, Stuttgart, 1987, p. 60; IR data in ref. 1h Search PubMed.
  20. M. Ballauff and G. F. Schmidt, Makromol. Chem., Rapid Commun., 1987, 8, 93 Search PubMed.
  21. M. B. Steinbrunn and G. Wenz, Angew. Chem., 1996, 108, 2274; Angew. Chem., Int. Ed. Engl., 1996, 35, 2139 Search PubMed; H. Rinke and E. Istel, Methoden der Org. Chem.(Houben-Weyl), 4th edn. Georg Thieme Verlag, Stuttgart, 1963, vol. 14(2), p. 99 Search PubMed.
  22. C. Meiners, S. Valiyaveettil and K. Müllen, unpublished results.
  23. M. Etter, J. Phys. Chem., 1991, 95, 4606.
  24. J. March, Advanced Organic Chemistry, 2nd edn., McGraw-Hill, New York, 1977, p. 228 Search PubMed.
  25. S. H. Pine, J. B. Hendrickson, D. J. Cram and G. S. Hammond, Organische Chemie, Vieweg, Braunschweig, 1987, p. 771 Search PubMed.
  26. M. Rehahn, A. D. Schlüter and W. J. Feast, Synthesis, 1988, 386 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.