Measurement of Gibbs energy of formation of Ca2 PbO4 using a solid-state cell with three electrodes

(Note: The full text of this document is currently only available in the PDF Version )

K. T. Jacob and K. P. Jayadevan


Abstract

Phase relations in the system Ca–Pb–O at 1100 K have been determined by equilibrating 18 compositions in the ternary and identifying the phases present in quenched samples by X-ray diffraction and energy dispersive X-ray analysis (EDX). Only one ternary compound Ca2 PbO4 was found to be present. The compound coexists with CaO and PbO. The intermetallic compounds Ca2 Pb, Ca5 Pb3 and CaPb and liquid alloys are in equilibrium with CaO. The standard Gibbs energies of formation of Ca2 PbO4 (880–1100 K) and Pb3O4 (770–910 K) were determined using solid-state cells based on yttria-stabilized zirconia as the solid electrolyte. Pure oxygen gas at 0.1 MPa was used as the reference electrode. For measurements on Ca2 PbO4 , a novel cell design with three electrodes in series, separated by solid electrolyte membranes, was used to avoid polarization of the electrode containing three solid phases. Two three-phase electrodes were used. The first absorbs the electrochemical flux of oxygen from the reference electrode to the measuring electrode. The other three-phase electrode, which is unaffected by the oxygen flux through the solid electrolyte, is used for electromotive force (EMF) measurement. The results from EMF studies were cross-checked using thermogravimetry (TG) under controlled oxygen partial pressures. The stability of Pb3O4 was investigated using a conventional solid-state cell with RuO2 electrodes. The results can be summarized by the following equations:


References

  1. A. Braileanu, M. Zaharescu, D. Crisan and E. Segal, Thermochim. Acta, 1995, 269/270, 553 CrossRef .
  2. H. Kitaguchi, J. Takada, K. Oda and Y. Miura, J. Mater. Res., 1990, 5, 929 CAS .
  3. M. Tromel, Z. Anorg. Allg. Chem., 1969, 371, 237 CrossRef CAS .
  4. U. Kuxmann and P. Fischer, Erzmetall., 1974, 27, 533 Search PubMed .
  5. C. Levy-Clement, I. Morgenstern-Badarau and A. Michel, Mater. Res. Bull., 1972, 7, 35 CrossRef CAS .
  6. Y. Idemoto, K. Shizuka and K. Fueki, Physica C, 1994, 255, 127 CrossRef .
  7. J. N. Pratt, Metall. Trans. A, 1990, 21, 1223 Search PubMed .
  8. G. Periaswami, S. V. Varamban, S. R. Babu and C. K. Mathews, Solid State Ionics, 1988, 26, 311 CrossRef CAS .
  9. J. Fouletier, P. Fabry and M. Kleitz, J. Electrochem. Soc., 1976, 123, 204 CAS .
  10. K. T. Jacob and J. H. E. Jeffes, Trans. Inst. Min. Metall., Sect. C, 1971, 80, C181 Search PubMed .
  11. G. G. Charette and S. N. Flengas, J. Electrochem. Soc., 1968, 115, 796 CAS .
  12. G. M. Kale and K. T. Jacob, Metall. Trans. B, 1992, 23, 57 Search PubMed .
  13. L. B. Pankratz, Thermodynamic Properties of Elements and Oxides, US Bureau of Mines Bull. 672, US Government Printing Office, Washington, DC, 1982 Search PubMed .
  14. K. T. Jacob and J. H. E. Jeffes, Trans. Inst. Min. Metall., Sect. C, 1971, 80, C32 Search PubMed .
  15. O. Knacke, O. Kubaschewski and K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 2nd edn., 1991, vol. II Search PubMed .
Click here to see how this site uses Cookies. View our privacy policy here.