Structure and properties of some new dihydropyrazine–tetracyanoquinodimethane charge transfer salts

(Note: The full text of this document is currently only available in the PDF Version )

David J. R. Brook and Tad H. Koch


Abstract

Rapid crystallization of acetonitrile solutions containing 4a,8a-diaza-2,6-dioxa-3,4,7,8-tetrahydro-4,4,8,8-tetramethylanthracene-1,++5-dione (DDTTA) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) results in two new polymorphs of the previously reported charge transfer salt DDTTA(TCNQ)2.The first of these {β-[DDTTA(TCNQ)2 ]} crystallizes in the space group P21 /c with cell dimensions a=15.04(2), b=6.953(7), c=16.22(2) Å, beta;=99.4(1)°. The structure of the second polymorph {γ-[DDTTA(TCNQ)2 ]} could not be determined as a result of small crystal size. The new donor, 2,4,4,6,8,8-hexamethyl-2,4a,6,8a-tetraaza-3,4,7,8-tetrahydroanthracene-1,++5-dione (HTTA) also forms a charge transfer salt with TCNQ of composition HTTA·TCNQ·CH3CN. This salt crystallizes in the space group P21 /c with a=8.973(1), b=22.907(4), c=14.048(2) Å, β=96.69(1)°. The magnetic susceptibility of the three new materials and the originally reported structure {α-[DDTTA(TCNQ)2 ]} was recorded as a function of temperature. Ferromagnetic exchange is observed between DDTTA cations in α-[DDTTA(TCNQ)2 ] as a result of the molecular alignment brought about by hydrogen bonding. Hydrogen bonding between cations is also observed in HTTA·TCNQ·CH3CN; however, a slightly different orientation results in weak antiferromagnetic exchange between cations. β-[DDTTA(TCNQ)2 ] and γ-[DDTTA(TCNQ)2 ] also show overall antiferromagnetic exchange. In the DDTTA salts, the TCNQ anions are arranged in stacks resulting in semiconducting behavior. In the α and β phases these stacks are dimerized whereas the magnetic susceptibility of the γ phase suggests the stack is tetramerized. In HTTA·TCNQ·CH3CN the TCNQ anions are arranged in discrete dimers.


References

  1. J. A. Zerkowski, C. T. Seto and G. M. Whitesides, J. Am. Chem. Soc., 1992, 114, 5473 CrossRef CAS.
  2. R. J. J. Visser, J. L. De Boer and A. Vos, Acta Crystallogr. Sect. B, 1993, 49, 859 CrossRef.
  3. D. J. R. Brook, R. C. Haltiwanger and T. H. Koch, J. Am. Chem. Soc., 1991, 113, 5910 CrossRef CAS.
  4. D. J. R. Brook, R. C. Haltiwanger and T. H. Koch, J. Am. Chem. Soc., 1992, 114, 6017 CrossRef CAS.
  5. D. J. R. Brook, B. Noll and T. H. Koch, J. Chem. Soc., Perkin Trans 1, in the press Search PubMed.
  6. J. S. Chappell, A. N. Bloch, W. A. Bryden, M. Maxfield, T. O. Poehler and D. O. Cowan, J. Am. Chem. Soc., 1981, 103, 2442 CrossRef.
  7. V. Zelezny, J. Petzelt and R. Swietlik, Phys. Status Solidi B, 1987, 140, 595 CAS.
  8. G. A. Sawatsky, S. Huizinga, J. Kommandeur, K. Kopinga and W. J. M. de Jonge, in Quasi One-Dimensional Conductors 2, ed. S. Barisic, A. Bjelis, J. R. Cooper and B. Leontic, Springer Verlag, Berlin, 1979 Search PubMed.
  9. G. A. Sawatsky, S. Huizinga and J. Kommandeur, in Quasi One-Dimensional Conductors 2, ed. S. Barisic, A. Bjelis, J. R. Cooper and B. Leontic, Springer Verlag, Berlin, 1979 Search PubMed.
  10. K. Yakushi, M. Iguchi, G. Katagiri, T. Kusaka, T. Ohita and H. Kuroda, Bull. Chem. Soc. Jpn., 1981, 54, 348 CAS.
  11. R. L. Carlin, Magnetochemistry, Springer Verlag, Berlin, 1986 Search PubMed.
  12. D. B. Tanner, J. S. Miller, M. J. Rice and J. J. Ritsko, Phys. Rev. B, 1980, 21, 5835 CrossRef CAS.
  13. D. Gatteschi and R. Sessoli, Magn. Reson. Rev., 1990, 15, 1 Search PubMed.
  14. W. E. Hatfield, J. Appl. Phys., 1981, 52, 1985 CrossRef CAS.
  15. T. Smith and J. Friedberg, Phys. Rev., 1968, 176, 660 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.