Merlinoite synthesis studies with and without organocations

(Note: The full text of this document is currently only available in the PDF Version )

Jason C. Quirin, Lunteh Yuen and Stacey I. Zones


Abstract

A novel synthesis of zeolite W (MER phase) was carried out combining the use of an organocation ‘template’ molecule and zeolite K-Y as the aluminium source. The reaction was carried out at lower than usual OH /SiO2 reactant ratios and that translated into an exceptionally high SiO2 /Al2O3 ratio (SAR) of 7.7. This novel synthesis was contrasted with a recently described, wholly inorganic route to zeolite W, and with some previous organocation mediated zeolite syntheses. There is less template found inside the pores of W than in other syntheses to products like chabazite. For the wholly inorganic route, a novel synthesis strategy of removing the initial crystallization products, and then letting the crystallization proceed, was found as a successful route to W. The role of OH/SiO2 ratios was studied in an effort to bridge the inorganic chemistry for W vs. LTL crystallization and the role the template can play. A surprising outcome of the study was that the unit cell volumes are quite close for the W zeolites produced by the different syntheses routes we describe, even though their SAR values differ.


References

  1. R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, New York, 1982, p. 128 Search PubMed.
  2. R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, New York, 1982, ch. 1 Search PubMed.
  3. M. E. Davis and S. I. Zones, in Synthesis of Porous Materials, Zeolites, Clays and Nanostructures, ed. M. L. Occelli and H. Kessler, Marcel Dekker, New York, 1996, pp. 1–34 Search PubMed.
  4. S. I. Zones, Y. Nakagawa, L. T. Yuen and T. V. Harris, J. Am. Chem. Soc., 1996, 118, 7558 CrossRef CAS.
  5. S. I. Zones, Microporous Mater., 1994, 2, 281 CrossRef CAS.
  6. P. A. Jacobs and J. A. Martens, in Synthesis of High-Silica Aluminosilicate Zeolites, Elsevier, Amsterdam, 1987, p. 167 Search PubMed.
  7. S. I. Zones and R. A. Van Nordstrand, Zeolites, 1988, 8, 409 CAS.
  8. S. I. Zones and R. A. Van Nordstrand, Zeolites, 1988, 8, 166 CAS.
  9. R. F. Lobo, S. I. Zones and R. C. Medrud, Chem. Mater., 1996, 8, 2409 CrossRef CAS.
  10. G. D. Short and T. V. Whittam, US Pat., 4 372 930, 1983 Search PubMed.
  11. W. M. Meier and W. Seiber, Helv. Chim. Acta, 1974, 57, 1533 CrossRef.
  12. S. I. Zones, Y. Nakagawa and S. D. Toto, in preparation.
  13. S. I. Zones, J. Chem. Soc., Faraday Trans., 1990, 86, 3467 RSC.
  14. S. I. Zones and Y. Nakagawa, in Zeolites: A Refined Tool for Designing Catalytic Sites, ed. L. Bonneviot and S. Kaliagiune, Elsevier, Amsterdam, 1995, p. 45 Search PubMed.
  15. S. I. Zones, J. Chem. Soc., Faraday Trans., 1991, 87, 3709 RSC.
  16. R. M. Milton, US Pat., 3 012 853, 1961 Search PubMed.
  17. A. Bieniok, K. Bornholdt, U. Brendel and W. H. Baur, J. Mater. Chem., 1996, 6, 271 RSC.
  18. S. I. Zones, R. A. Van Nordstrand, D. S. Santilli, D. M. Wilson, L. T. Yuen and L. D. Scampavia, in Zeolites: Facts, Figures, Future, ed. P. A. Jacobs and R. A. van Santen, Elsevier, Amsterdam, 1989, p. 299 Search PubMed.
  19. T. V. Whittam and M. Spencer, GB Pat., 1 450 411, 1976 Search PubMed.
  20. D. W. Breck, Zeolite Molecular Sieves, Krieger Publ., 1976 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.