Preparation of amorphous Fe2O3 powder with different particle sizes

(Note: The full text of this document is currently only available in the PDF Version )

X. Cao, Yu. Koltypin, R. Prozorov, G. Kataby and A. Gedanken


Abstract

A method for the preparation of amorphous Fe2O3 powder with particle size of about 25 nm is reported. The amorphicity of Fe2O3 nanoparticles was determined by X-ray diffraction (XRD), and by electron diffraction measurements. The control of the particle size has been demonstrated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetry (TG), surface area measurements (BET) and Quantum Design SQUID magnetization measurements. The magnetization of pure amorphous Fe2O3 is very low (<5 emu g–1) and it crystallizes at 285±10 °C. The measured properties demonstrated a strong dependence of the particle size on the concentration of Fe(CO)5 in decalin. The more dilute the solution, the smaller the particle size of the amorphous Fe2O3 product obtained.


References

  1. J. Livage, J. Phys., 1981, 42, 981 Search PubMed.
  2. Ferromagnetic Materials, ed. E. P. Wohlfarth, North-Holland, Amsterdam–New York–Oxford–Tokyo, 1980, vol. 2, p. 405 Search PubMed.
  3. L. Murawski, C. H. Chung and J. D. Mackenzie, J. Non-Cryst. Solids, 1979, 32, 91 CrossRef CAS.
  4. H. Edward Curry-Hyde, H. Musch and A. Baiker, Appl. Catal., 1990, 65, 211 CrossRef CAS.
  5. H. Cao and S. L. Suib, J. Am. Chem. Soc., 1994, 116, 5334 CrossRef CAS.
  6. M. Sugimoto, J. Magn. Magn. Mater., 1994, 133, 460 CrossRef CAS.
  7. K. Tanaka, K. Hirao and N. Soga, J. Appl. Phys., 1991, 69, 7752 CrossRef CAS.
  8. M. Sugimoto and N. Hiratsuka, J. Magn. Magn. Mater., 1983, 31/34, 1533 CrossRef.
  9. W. E. Steger, H. Landmesser, U. Boettcher and E. J. Schubert, Mol. Struc., 1990, 217, 341 Search PubMed.
  10. B. Pashmakov, B. Claflin and H. Fritzsche, Solid State Commun., 1993, 86, 619 CrossRef CAS.
  11. K. Kandori and T. Ishikawa, Langmuir, 1991, 7, 2213 CrossRef CAS.
  12. K. S. Suslick, S. B. Choe, A. A. Cichowlas and M. W. Grinstaff, Nature (London), 1991, 353, 414 CrossRef CAS.
  13. K. S. Suslick, M. Fang, T. Hyeon, and A. A. Cichowlas, Molecularly Designed Ultrafine Nanostructured Materials, ed. K. E. Gonsalves and G. M. Chow, Pittsburgh, PA, 1994, pp. 443–448 Search PubMed.
  14. K. S. Suslick, T. Hyeon, M. Fang and A. A. Cichowlas, Molecularly Designed Ultrafine Nanostructured Materials, ed. K. E. Gonsalves and G. M. Chow, Pittsburgh, PA, 1994, pp. 201–206 Search PubMed.
  15. M. W. Grinstaff, M. B. Salamon and K. S. Suslick, Phys. Res. Rev. B, 1993, 48, 269 Search PubMed.
  16. X. Cao, Yu. Koltypin, G. Kataby, R. Prozorov and A. Gedanken, J. Mater. Res., 1995, 10, 2952 CAS.
  17. X. Cao, Yu. Koltypin, G. Kataby, R. Prozorov and A. Gedanken, J. Mater. Res., 1997, 12, 402 CAS.
  18. Yu. Koltypin, X. Cao, G. Kataby, R. Prozorov and A. Gedanken, J. Non-Cryst. Solids, 1996, 201, 159 CrossRef CAS.
  19. S. Ramesh, Yu. Koltypin, R. Prozorov and A. Gedanken, Chem. Mater., 1997, 9, 546 CrossRef CAS.
  20. F. Feigel, Spot Tests, Inorganic Applications, Elsevier, New York, 1954, vol. 1, pp. 154–155 Search PubMed.
  21. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley Interscience, New York, 1962, p. 709 Search PubMed.
  22. D. Segal, Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press, New York, 1989, p. 150 Search PubMed.
  23. S. R. Elliott, Physics of Amorphous Materials, Longman, London and New York, 1984, pp. 350–3457 Search PubMed.
  24. S. Morup, Europhys. Lett., 1994, 28, 671 Search PubMed; S. Morup and E. Tronc, Phys. Rev. Lett., 1994, 72, 3278 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.