Redox processes in LixNi1–yCoyO2 cobalt-rich phases

(Note: The full text of this document is currently only available in the PDF Version )

Ismael Saadoune, Michel Ménétrier and Claude Delmas


Abstract

Samples of LixNi0.1Co0.9O2 (0.5≤x≤1.0), prepared by electrochemical deintercalation from LiNi0.1Co0.9O2 , have been characterized by X-ray diffraction, electrical measurements and 7Li NMR spectroscopy. A good correlation is found between the electrochemical behaviour of the LixNi0.1Co0.9O2 electrode materials and their physical properties. During lithium deintercalation from LiNi0.1Co0.9O2 , the trivalent nickel ions are oxidized preferentially to trivalent cobalt ions. This leads to a reversible break in the potential–composition curve around the composition Li0.9Ni0.1Co0.9O2 . This change in the redox regime, which occurs without any structural transformation, has been confirmed by the evolution of the electrical conduction process and that of the 7Li NMR signal.


References

  1. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mater. Res. Bull., 1980, 15, 783 CrossRef CAS.
  2. T. Nagaura and K. Tozawa, Prog Batteries Sol. Cells, 1990, 9, 209 Search PubMed.
  3. M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough and P. Groves, Mater. Res. Bull., 1985, 20, 1137 CrossRef CAS.
  4. J. R. Dahn, U. von Sacken, M. W. Juzhow and H. Al Janabi, J. Electrochem. Soc., 1991, 138, 2.
  5. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi and H. Komori, Electrochim. Acta, 1993, 38, 1159 CrossRef CAS.
  6. M. Broussely, F. Perton, P. Biensan, J. M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier and J. P. Pérès, J. Power Sources, 1995, 54, 54 CrossRef CAS.
  7. A. Lecerf, M. Broussely and J. P. Gabano, Eur. Pat. Appl., EP 89 110 158, 1989 Search PubMed.
  8. C. Delmas, I. Saadoune and A. Rougier, J. Power Sources, 1993, 43–44, 595 CrossRef.
  9. I. Saadoune and C. Delmas, J. Mater. Chem., 1996, 6, 193 RSC.
  10. M. M. Thackeray, P. J. Johnson, L. A. de Picciotto, P. G. Bruce and J. B. Goodenough, Mater. Res. Bull., 1984, 19, 179 CrossRef CAS.
  11. J. M. Tarascon and D. Guyomard, Electrochim. Acta, 1993, 38, 1221 CrossRef CAS.
  12. C. Delmas and I. Saadoune, Solid State Ionics, 1992, 53–56, 370 CrossRef CAS.
  13. A. Rougier, I. Saadoune, P. Gravereau, P. Willmann and C. Delmas, Solid State Ionics, 1996, 90, 83 CrossRef CAS.
  14. J. P. Pérès, C. Delmas, A. Rougier, M. Broussely, F. Perton, P. Biensan and P. Willmann, J. Phys. Chem. Solids, 1996, 57, 1057 CrossRef CAS.
  15. R. J. Gummow and M. M. Thackeray, J. Electrochem. Soc., 1993, 140, 3365.
  16. D. Gaurant, N. Baffier, B. Garcia and J. P. Pereira-Ramos, Solid State Ionics, 1996, 91, 45 CrossRef CAS.
  17. I. Saadoune and C. Delmas, J. Solid State Chem., in press Search PubMed.
  18. M. Ménétrier, A. Rougier and C. Delmas, Solid State Commun., 1994, 90, 439 CrossRef CAS.
  19. P. Dordor, E. Marquestau and G. Villeneuve, Rev. Phys. Appl., 1980, 15, 1607 Search PubMed.
  20. M. G. S. R. Thomas, P. G. Bruce and J. B. Goodenough, J. Electrochem. Soc., 1985, 132, 1521 CAS.
  21. W. Li, J. N. Reimers and J. R. Dahn, Solid State Ionics, 1993, 67, 123 CrossRef CAS.
  22. J. M. Amatucci, J. M. Tarascon and L. C. Klein, J. Electrochem. Soc., 1996, 143, 1114 CAS.
  23. I. Saadoune, A. Maazaz, M. Ménétrier and C. Delmas, J. Solid State Chem., 1996, 122, 111 CrossRef CAS.
  24. R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B, 1969, 25, 925 CrossRef CAS.
  25. J. B. Goodenough, Prog. Solid State Chem., 1971, 5, 279 CrossRef.
  26. J. Molenda, A. Stoklosa and T. Bak, Solid State Ionics, 1989, 36, 53 CrossRef CAS.
  27. C. Delmas, C. Faure and Y. Borthomieu, Mater. Sci. Eng. B, 1992, 13, 89 Search PubMed.
  28. C. Marichal, J. Hirschinger, P. Granger, M. Ménétrier, A. Rougier and C. Delmas, Inorg. Chem., 1995, 34, 1773 CrossRef CAS.
  29. Y. Borthomieu, PhD Thesis, University of Bordeaux I, France, 1990.
Click here to see how this site uses Cookies. View our privacy policy here.