Inclusion and separation of picoline isomers by a diol host compound

(Note: The full text of this document is currently only available in the PDF Version )

Mino R. Caira, Alicia Horne, Luigi R. Nassimbeni and Fumio Toda


Abstract

Structures of the inclusion compounds formed between the host compound 1,1-bis(4-hydroxyphenyl)cyclohexane and the isomers of picoline have been elucidated. The activation energies and the kinetics of desolvation for the complexes have been determined. Competition experiments have been performed to investigate which isomer is preferentially enclathrated by the host. Lattice energy calculations explain the results of the competition experiments.


References

  1. D. J. Cram and J. M. Cram, in Container molecules and their guests, Monographs in Supramolecular Chemistry No. 4, Royal Society of Chemistry, Cambridge, 1994 Search PubMed.
  2. F. Toda, in Topics in Current Chemistry, Vol. 140, Molecular Inclusion and Molecular Recognition—Clathrates I, Springer-Verlag, Berlin, 1987, ch. 3 Search PubMed.
  3. S. A. Bourne, L. R. Nassimbeni and F. Toda, J. Chem. Soc., Perkin Trans. 2, 1991, 1335 RSC.
  4. M. R. Caira, L. R. Nassimbeni and J. L. Scott, J. Chem. Soc., Chem. Commun., 1993, 613 Search PubMed.
  5. E. Weber, in Inclusion Compounds, vol. 5, ed. J. L. Atwood, J. E. D. Davies and D. D. MacNicol, Oxford University Press, Oxford, 1991, ch. 5 Search PubMed.
  6. D. Worsch and F. Vögtle, J. Inclusion Phenom., 1986, 4, 163 CrossRef CAS.
  7. S. A. Bourne, L. R. Nassimbeni, K. Skobridis and E. Weber, J. Chem. Soc., Chem. Commun., 1991, 282 RSC.
  8. I. Goldberg, Z. Stein, K. Tanaka and F. Toda, J. Inclusion Phenom., 1988, 6, 15 CrossRef CAS.
  9. M. R. Caira, A. Horne, L. R. Nassimbeni, K. Okuda and F. Toda, J. Chem. Soc., Perkin Trans. 2, 1995, 1063 RSC.
  10. M. R. Caira, A. Horne, L. R. Nassimbeni and F. Toda, J. Chem. Soc., Perkin Trans. 2, in the press Search PubMed.
  11. G. M. Sheldrick, SHELX-86, in Crystallographic Computing 3, ed. G. M. Sheldrick, C. Kruger and R. Goddard, Oxford University Press, Oxford, 1985, p. 175 Search PubMed.
  12. G. M. Sheldrick, SHELX-93: A Program for Crystal Structure Determination, J. Appl. Crystallogr., 1993 Search PubMed.
  13. W. D. S. Motherwell, in EENY—Potential Energy Program, Cambridge University, England, unpublished Search PubMed.
  14. C. F. Marais, HEENY—Modification of EENY to allow H-bonding calculations, University of Cape Town, 1990 Search PubMed.
  15. E. Giglio, Nature, 1969, 222, 339 CAS.
  16. A. J. Pertsin and A. I. Kitaigorodsky, The Atom–Atom Potential Method, Chemical Physics 43, Springer-Verlag, Berlin, 1987, ch. 3 Search PubMed.
  17. A. Vedani and J. D. Dunitz, J. Am. Chem. Soc., 1985, 107, 7653 CrossRef CAS.
  18. S. A. Bourne, L. Johnson, C. Marais, L. R. Nassimbeni, E. Weber, K. Skobridis and F. Toda, J. Chem. Soc., Perkin Trans. 2, 1991, 1707 RSC.
  19. M. E. Brown, D. Dollimore and A. K. Galwey, Comprehensive Chemical Kinetics, ed. C. H. Bamford and C. J. Tipper, Elsevier, Amsterdam, 1980, vol. 22 Search PubMed.
  20. J. H. Flynn and L. A. Wall, Polym. Lett., 1966, 4, 323 Search PubMed.
  21. M. R. Caira, L. R. Nassimbeni, W.-D. Schubert and F. Toda, Thermochim. Acta, 1992, 206, 265 CrossRef CAS.
  22. K. Yvon, W. Jeitschko and E. Parthé, J. Appl. Crystallogr., 1977, 10, 73 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.