Raman spectroscopic studies of the thermal decomposition mechanism of ammonium metavanadate

(Note: The full text of this document is currently only available in the PDF Version )

Jen Twu, Chih-Feng Shih, Tzyy-Haur Guo and Kuei-Hsien Chen


Abstract

Thermal decomposition of NH4VO3 under N2 and NH3+ H2O has been studied on a molecular level by in situ Raman spectroscopy in the temperature range 150–400 °C. Under N2 , the decomposition mechanism leading to formation of V2O5 has been observed to proceed via two intermediates: viz. an amorphous, transitional (NH4)2V4O11 and NH4V3O8 . Under NH3+H2O, a slightly different decomposition pathway, rationalized in terms of stability of intermediates, leading to the formation of V2O3 has been observed. The identification of Raman-inactive V2O3 is further supported by the formation of V2O4and V2O5 , along with monomeric vanadyl species, through oxidation of V2O3 at 400 °C.


References

  1. D. J. Hucknall, Selective Oxidation of Hydrocarbons, Academic Press, London, 1974 Search PubMed.
  2. H. Bosch and F. Janssen, Catal. Today, 1988, 2, 369 CrossRef CAS.
  3. P. Mars and J. G. H. Massen, J. Catal., 1968, 10, 1 CrossRef CAS.
  4. M. Taniguchi and T. R. Ingraham, Can. J. Chem., 1964, 42, 2467 CAS.
  5. C. Lampe-Onnerud and J. O. Thomas, J. Mater. Chem., 1995, 5, 1075 RSC.
  6. U. Von Sacken and J. R. Dahn, J. Power Sources, 1989, 26, 461 CrossRef CAS.
  7. A. Shimizu, T. Watanabe and M. Inagaki, J. Mater. Chem., 1994, 4, 1475 RSC.
  8. M. E. Brown, L. Glasser and B. V. Stewart, J. Therm. Anal., 1975, 7, 125 Search PubMed.
  9. S. A. Selim, Ch. A. Philp and R. Ch. Mikhail, Thermochim. Acta, 1980, 36, 287 CrossRef CAS.
  10. M. E. Brown, L. Glasser and B. V. Stewart, J. Therm. Anal., 1974, 6, 529 Search PubMed.
  11. C. Li, H. Zhang, K. Wang, Y. Miao and Q. Xin, Appl. Spectrosc., 1993, 47, 56 CAS.
  12. J. M. Stencel, Raman Spectroscopy For Catalysis, Van Nostrand Reinhold, New York, 1990 Search PubMed.
  13. F. D. Hardcastle and I. E. Wach, J. Phys. Chem., 1991, 95, 5031 CrossRef CAS.
  14. J. Twu and P. K. Dutta, J. Phys. Chem., 1989, 93, 7863 CrossRef CAS.
  15. J. Twu and P. K. Dutta, J. Catal., 1990, 124, 503 CrossRef CAS.
  16. A. M. Heyns and M. W. Venter, Z. Naturforsch., Teil B, 1987, 42, 843 CAS.
  17. J. Haber, T. Machej, E. M. Serwicka and I. E. Wachs, Catal. Lett., 1995, 32, 101 CrossRef CAS.
  18. S. Onodera and Y. Ikegami, Inorg. Chem., 1980, 19, 615 CrossRef CAS.
  19. H. T. Evan, Jr. and S. Block, Inorg. Chem., 1996, 5, 1808.
  20. J. Skibsted, N. C. Nielsen, H. Bildsoe and H. J. Jakobsen, J. Am. Chem. Soc., 1993, 115, 7351 CrossRef CAS.
  21. A. D. Kelmers, J. Inorg. Nucl. Chem., 1961, 21, 45 CrossRef CAS.
  22. L. V. Kristallov, O. V. Koryakova, L. A. Perelyaeva and M. P. Tsvetkova, Russ. J. Inorg. Chem., 1987, 32, 1073.
  23. L. Abello, E. Husson, Y. Repelin and G. Lucazeau, J. Solid State Chem., 1985, 56, 379 CrossRef CAS.
  24. J. P. Baltrus, L. E. Makovsky, J. M. Stencel and D. M. Hercules, Anal. Chem., 1985, 57, 2500 CrossRef CAS.
  25. R. F. Wormsbecher, A. W. Peters and J. M. Maselli, J. Catal., 1985, 96, 363 CrossRef.
  26. M. Fournier, C. Feumi-Jantou, C. Rabia, G. Herve and S. Launay, J. Mater. Chem., 1992, 2, 971 RSC.
  27. J. J. Cruywagen, J. Bernard, B. Heyns and A. N. Westra, Inorg. Chem., 1996, 35, 1556 CrossRef CAS.
  28. L. D. Frederickson, Jr., Anal. Chem., 1963, 35, 819.
  29. V. Luca, D. J. Maclachlan, J. M. Hook and R. Withers, Chem. Mater., 1995, 7, 2220 CrossRef CAS.
  30. G. G. Janauer, A. Dobley, J. Guo, P. Zavalij and M. S. Whittingham, Chem. Mater., 1996, 8, 2096 CrossRef.
  31. F. J. J. G. Janssen, F. M. G. van den Kerkhof, H. Boasch and J. R. H. Ross, J. Phys. Chem., 1987, 91, 6633 CrossRef CAS.
  32. S. T. Oyama, G. T. Went, K. B. Lewis, A. T. Bell and G. A. Somorjai, J. Phys. Chem., 1989, 93, 6786 CrossRef CAS.
  33. G. T. Went, L. J. Leu, S. J. Lombardo and A. T. Bell, J. Phys. Chem., 1992, 96, 2235 CrossRef CAS.
  34. R. B. Bjorklund, L. A. H. Andersson, C. U. I. Odenbrand, L. Sjoqvist and A. Lund, J. Phys. Chem., 1992, 96, 10953 CrossRef CAS.
  35. W. S. Went and J. A. Reimer, J. Am. Chem. Soc., 1992, 114, 5768 CrossRef.
  36. K. V. Narayana, A. Venugopal, K. S. Rama Rao, V. Venkat Rao, S. Khaja Masthan and P. Kanta Rao, Appl. Catal. A, 1997, 150, 269 CrossRef CAS.
  37. I. E. Wachs and S. S. Chan, Appl. Surf. Sci., 1984, 20, 181 CrossRef CAS.
  38. F. A. Miller and L. R. Cousins, J. Chem. Phys., 1957, 26, 329 CrossRef CAS.
  39. N. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer and F. J. Feher, J. Phys. Chem., 1993, 97, 8240 CrossRef CAS.
  40. G. T. Went, S. T. Oyama and A. T. Bell, J. Phys. Chem., 1990, 94, 4240 CrossRef CAS.
  41. I. E. Wachs, G. Deo, M. A. Vuurman, H. Hu, D. S. Kim and J.-M. Jehng, J. Mol. Catal., 1993, 82, 443 CrossRef CAS.
  42. M. Schraml-Marth, A. Wokaun and A. Baiker, Fresenius' J. Anal. Chem., 1991, 341, 87 CrossRef CAS.
  43. K. Inumaru, M. Misono and T. Okuhara, Appl. Catal. A, 1997, 149, 133 CrossRef CAS.
  44. U. Scharf, M. Schrami-Marth, A. Wokaun and A. Baiker, J. Chem. Soc., Faraday Trans., 1991, 87, 3299 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.