Impurity cations in the bulk and the {001} surface of muscovite: an atomistic simulation study

(Note: The full text of this document is currently only available in the PDF Version )

John A. Purton, Neil L. Allan and Jon D. Blundy


Abstract

Solution energies are calculated for monovalent and divalent impurities in the bulk and the {001} surface of muscovite, using atomistic simulation techniques and a consistent set of interatomic potentials. Cs+ is the most soluble alkali metal cation. There are marked differences between the bulk and surface solution energies for the smaller univalent cations, indicating appreciable segregation to the surface. Without deprotonation of an OH group, none of the Group 1 cations are able to enter the hexagonal cavity on the mica basal plane. Small divalent cations are predicted to substitute for octahedral Al with the most favourable charge-balance mechanism involving the additional substitution of Al for Si. The solution mechanism for larger, less soluble divalent cations involves substitution for K+ , with a compensating Al/Si exchange. Where possible, results are calculated for two models, the first assuming complete ordering of Al and Si on the tetrahedral aluminosilicate sheets and the second completely random ordering. There is little difference between the values from the two models, with the exception of the {001} surface energy.


References

  1. J. A. Purton, N. L. Allan, J. D. Blundy and E. A. Wasserman, Geochim. Cosmochim. Acta, 1996, 60, 4977 CrossRef CAS.
  2. J. A. Purton, N. L. Allan and J. D. Blundy, Geochim. Cosmochim. Acta, in press Search PubMed.
  3. See, for example, Rev. Mineral., ed. S. W. Bailey, 1984, 13 Search PubMed.
  4. For an overview of theoretical approaches to the modelling of phyllosilicates, see W. F. Bleam, Rev. Geophys., 1993, 31, 1 Search PubMed.
  5. C. R. A. Catlow and W. C. Mackrodt, in Computer Simulation of Solids, ed. C. R. A. Catlow and W. C. Mackrodt, Springer-Verlag, Berlin–Heidelberg–New York, 1982, ch. 1 Search PubMed.
  6. C. R. A. Catlow, in Solid State Chemistry: Techniques, ed. A. K. Cheetham and P. Day, Clarendon Press, Oxford, 1987, ch. 7 Search PubMed.
  7. For example, Computer Modelling in Inorganic Crystallography, ed. C. R. A. Catlow, Academic Press, San Diego–London, 1996 Search PubMed.
  8. For previous mineral simulations see, for example, M. J. Sanders, M. Leslie and C. R. A. Catlow, J. Chem. Soc., Chem. Commun., 1984, 1273 Search PubMed; C. R. A. Catlow and G. D. Price, Nature (London), 1990, 347, 243 RSC; A. Patel, G. D. Price and M. Mendelssohn, Phys. Chem. Mineral., 1991, 17, 690 CrossRef CAS; B. Winkler, M. T. Dove and M. Leslie, Am. Mineral., 1991, 76, 313 Search PubMed; S. C. Parker and G. D. Price, Adv. Solid State Chem., 1989, 1, 295 CAS.
  9. J. Sanz and J. M. Serratosa, J. Am. Chem. Soc., 1984, 106, 4790 CrossRef CAS; C. P. Herrero, J. Sanz and J. M. Serratosa, Solid State Commun., 1985, 53, 151 CrossRef CAS.
  10. P. Pavlides and C. R. A. Catlow, Mol. Phys., 1994, 81, 1269 CAS.
  11. B. G. Dick and A. W. Overhauser, Phys. Rev., 1958, 112, 90 CrossRef.
  12. A. B. Lidiard and M. J. Norgett, in Computational Solid State Physics, ed. F. Herman, W. W. Dalton and T. R. Koeler, Plenum, New York, 1972, p. 385 Search PubMed.
  13. M. Leslie, SERC Daresbury Laboratory Technical Memorandum DL/SCI/TM31T, 1982. A region I size of 8 Å was used throughout.
  14. N. F. Mott and M. T. Littleton, Trans. Faraday Soc., 1938, 34, 485 RSC.
  15. M. Leslie and M. J. Gillan, J. Phys. C, 1985, 18, 973 CrossRef CAS.
  16. For example, D. H. Gay and A. L. Rohl, J. Chem. Soc., Faraday Trans., 1995, 91, 925 Search PubMed.
  17. For earlier work considering largely only the electrostatic contribution to the total energy, see, e.g., H. D. B. Jenkins, in Computer Simulation of Solids, ed. C. R. A. Catlow and W. C. Mackrodt, Springer-Verlag, Berlin–Heidelberg–New York, 1982, ch. 16 Search PubMed; R. F. Giese Jr., Rev. Mineral., 1984, 13, 105 Search PubMed.
  18. D. R. Collins and C. R. A. Catlow, Am. Mineral., 1992, 77, 1172 CAS The potential cutoff used is 12 Å.
  19. F. A. Kroger and H. J. Vink, Solid State Phys., 1956, 3, 307 Search PubMed.
  20. For the ionic radii we have taken the values for six-fold coordination from R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 Search PubMed; As suggested by Babel (D. Babel, Z. Anorg. Allg. Chem., 1969, 369, 117) ionic radii for the twelve-coordinate M+ and M2+ ions have been assumed to be 6% greater than the radii for the same ions when octahedrally coordinated CrossRef.
  21. For example, M. M. Morel and J. G. Hering, Principles and Applications of Aquatic Chemistry, Wiley, New York, 1993, p. 557 Search PubMed.
  22. J. Icenhower and D. London, Am. Mineral., 1995, 80, 1229 CAS.
  23. F. Bertaut, Compt. Rend., 1958, 246, 3447 Search PubMed.
  24. S. Nishimura, S. Biggs, P. J. Scales, T. W. Healey, K. Tsunematsu and T. Tateyama, Langmuir, 1994, 10, 4554 CrossRef CAS.
  25. U. Hofmann and R. Z. Klemen, Z. Anorg. Allg. Chem., 1950, 262, 95; R. Green-Kelly, Mineral. Mag., 1955, 30, 604 Search PubMed; R. Tettenhorst, Am. Mineral., 1962, 47, 769 CAS; W. F. Jaynes and J. M. Bigham, Clays Clay Miner., 1987, 35, 440 CAS.
  26. M. Volfinger, Bull. Soc. Fr. Minéral Cristallogr., 1975, 98, 49 Search PubMed.
  27. C. V. Guidotti, Rev. Mineral., 1984, 13, 357 Search PubMed.
  28. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  29. R. A. Knurr and S. W. Bailey, Clays Clay Miner., 1986, 34, 7 CAS.
  30. M. T. Vaughan and S. Guggenheim, J. Geophys. Res., 1986, 92, 4657.
  31. M. F. Golop, A. B. Nalivken and A. Vokemenstev, SER Shrencat Natures, 1968, 22, 3 Search PubMed.