Optimization of a new modified wet-chemistry process for the synthesis of BPSCCO superconductor precursor powders with specific stoichiometr

(Note: The full text of this document is currently only available in the PDF Version )

Chuanbin Mao, Lian Zhou, Fuzai Cui and Hengde Li


Abstract

A modified coprecipitation process has been developed based on a stoichiometry study of the oxalate coprecipitation process in water for the synthesis of Bi–Pb–Sr–Ca–Cu–O multi-component powders. The coprecipitation reaction is carried out in a mixed solution composed of water, ethanol (90 vol%) and poly(ethylene glycol), thus overcoming the serious shortcoming of water-medium coprecipitation, namely the inability to maintain stoichiometry in Bi-system superconductor powders. The modified process is optimized by the study of the effects of the pH value, oxalic acid concentration and ageing time on stoichiometry maintenance in the precipitate. The precipitation parameters have dramatic effects on the stoichiometry and homogeneity, which in turn affect the superconductivity of a silver-sheathed (Bi,Pb)2Sr2Ca2Cu3O x(2223) superconducting tape prepared by the powder-in-tube process. Our results highlight the importance of controlling powder synthesis conditions for obtaining high critical current density (Jc) tape.


References

  1. A. Bhargara, T. Ymashita and I. D. R. Mackinnon, Physica C, 1995, 247, 385 CrossRef.
  2. L. N. Wang, I. V. Zakharchenko, M. Muhammed, J. A. Xu, A. M. Grishin, K. V. Rao and U. Blachandram, Supercond. Sci. Technol., 1995, 8, 94 CrossRef CAS.
  3. D. H. Chen, C. Y. Shei, S. R. Sheen and C. T. Chang, Jpn. J. Appl. Phys., 1991, 30, 1198 CAS.
  4. A. Sumigama, T. Yoshitomi, H. Endo, J. Tsuchiya, N. Kijima, M. Mizuno and Y. Oguri, Jpn. J. Appl. Phys., 1988, 27, 1542.
  5. A. Tanaka, N. Kamehae and K. Niwam, Appl. Phys. Lett., 1989, 55, 1252 CrossRef CAS.
  6. M. Ueyama, Jpn. J. Appl. Phys., 1991, 30, L1384 CAS.
  7. Y. J. Liang, Physical Chemistry (in Chinese), Metallurgical Industry Press, Beijing, China, 1983, p. 209 Search PubMed.
  8. Handbook of Rare Metals (in Chinese), Metallurgical Industry Press, Beijing, China, 1993, p. 583 Search PubMed.
  9. W. Bian, Y. Zhu and M. Suenaga, Physica C, 1995, 248, 119 CrossRef CAS.
  10. N. Murayama, E. Sato, M. Awano, K. Kani and T. Torll, Jpn. J. Appl. Phys., 1989, 27, L1629.
  11. P. E. D. Morgan, R. M. Housiey, J. R. Porter and J. J. Ratto, Physica C, 1991, 176, 76 CrossRef CAS.
  12. Y. L. Chen and R. Steven, J. Am. Ceram Soc., 1992, 75, 1142 CAS.
  13. K. Schulze, Z. Metallkde., 1991, 81, 67 Search PubMed.
  14. R. Flukiger, A. Jeremie, B. Hensel, E. Siebt, J. Q. Xu and Y. Yamada, Adv. Cryog. Eng., 1992, 38, 1073 Search PubMed.
  15. W. B. Wu, L. B. Wang, X. G. Li, G. E. Zhou, Y. T. Qian, Q. N. Qin and Y. H. Zhang, J. Appl. Phys., 1991, 74, 7388 CrossRef.
  16. M. Xu, D. K. Finnemore, U. Balachandran and P. Haldar, Appl. Phys. Lett., 1995, 66, 3359 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.