Preparation of the layered double hydroxide (LDH) LiAl2(OH)7·2H2O, by gel to crystallite conversion and a hydrothermal method, and its conversion to lithium aluminates

(Note: The full text of this document is currently only available in the PDF Version )

M. Nayak, T. R. N. Kutty, V. Jayaraman and G. Periaswamy


Abstract

A layered double hydroxide (LDH) with chemical composition LiAl2(OH)7 ·2H2O was prepared via a wet chemical route of gel to crystallite (G–C) conversion at 80 °C involving the reaction of hydrated alumina gel, Al2O3 ·yH2O (80<y<120) with LiOH (Li2O/Al2O3 ≥0.5) in presence of hydrophilic solvents such as ethanol under refluxing conditions. The hydrothermal synthesis was carried out using the same reactants by heating to ≤140 °C in a Teflon-lined autoclave under autogenerated pressure (≤20 MPa). Transmission electron microscopy showed needle-shaped aggregates of size 0.04–0.1 µm for the gel to crystallite conversion product, whereas the hydrothermal products consisted of individual lamellar crystallites of size 0.2–0.5 µm with hexagonal morphology. The LDH prepared through the gel to crystallite conversion could be converted into LiAl(OH)4 ·H2O or LiAl(OH)3NO3 ·H2O by imbibition of LiOH or LiNO3 , respectively, under hydrothermal conditions. Thermal decomposition of LDH above 1400 °C gave rise to LiAl5O8 accompanied by the evaporation of Li2O. LiAl(OH)4 ·H2O and LiAl(OH)3NO3 ·H2O decomposed in the temperature range 400–1000 °C to α- or β-LiAlO2 . The compositional dependence of the product, the intermediate phases formed during the heat treatment and the possible reactions involved are described in detail.


References

  1. N. T. Melamed, F. de S. Barros, P. J. Viccaro and J. O. Artman, Phys. Rev. B, 1972, 5, 3377 CrossRef.
  2. J. G. Rabatin, J. Electrochem. Soc., 1978, 25, 920.
  3. J. Van Broekhoven, Illuminating Engineers Society Meeting, New York, July 1, 1973 Search PubMed.
  4. M. W. Parker and H. A. Borthwick, Plant Phys., 1949, 24, 345 Search PubMed.
  5. B. Rasneuer, Fusion Technol., 1985, 8, 1909 Search PubMed.
  6. J. Jimnez-Beceril, P. Bosch and S. Bulbulian, J. Nucl. Mater., 1991, 185, 304 CrossRef CAS.
  7. A. J. Appleby and F. R. Foulkes, in Fuel Cell Handbook, Van Nostrand Reinhold, New York, 1989, p. 297 Search PubMed.
  8. K. Kinoshita, J. W. Sim and J. P. Ackerman, Mater. Res. Bull., 1978, 13, 445 CrossRef CAS.
  9. K. R. Poeppelmeier, C. K. Chiang and D. O. Kipp, Inorg. Chem., 1988, 27, 4523 CrossRef CAS.
  10. K. R. Poeppelmeier and D. O. Kipp, Inorg. Chem., 1988, 27, 766 CrossRef CAS.
  11. J.-M. Jung and S.-B. Park, J. Mater. Sci. Lett., 1996, 15, 2012 CrossRef CAS.
  12. S. Miyata, Clays Clay Miner., 1980, 28, 50 CrossRef CAS.
  13. S. Miyata, Clays Clay Miner., 1983, 31, 305 CrossRef CAS.
  14. I. Sissoko, E. T. Eyagba, R. Sahai and P. Biloen, J. Solid State Chem., 1985, 60, 283 CrossRef CAS.
  15. J. E. Moneyron, A. De Roy and J. P. Besse, Sens. Actuators B, 1991, 4, 189 CrossRef.
  16. S. Miyata and A. Okaida, Clays Clay Miner., 1977, 4, 189.
  17. K. R. Poppelmeir and S. J. Hwu, Inorg. Chem., 1987, 26, 3297 CrossRef.
  18. T. R. N. Kutty and P. Padmini, Mater. Chem. Phys., 1995, 39, 200 CrossRef CAS.
  19. T. R. N. Kutty and M. Nayak, Mater. Res. Bull., 1995, 30, 325 CrossRef CAS.
  20. T. R. N. Kutty, V. Jayaraman and G. Periaswami, Mater. Res. Bull., 1996, 31, 1159 CrossRef CAS.
  21. T. R. N. Kutty, R. Jagannathan and R. P. Rao, Mater. Res. Bull., 1990, 25, 1355 CrossRef CAS.
  22. T. R. N. Kutty, Mater. Res. Bull., 1990, 25, 343 CrossRef CAS.
  23. C. J. Serna, J. L. Rendon and J. Iglesias, Clays Clay Miner., 1982, 30, 180 CrossRef CAS.
  24. M. P. Tarte, Acad. Des. Sci., 1962, 254, 2008 Search PubMed.
  25. D. Müller, G. Gessner, H. J. Behrens and G. Scheler, Chem. Phys. Lett., 1981, 79, 59 CrossRef.
  26. K. Datta and R. Roy, J. Am. Ceram. Soc., 1963, 46, 388.
Click here to see how this site uses Cookies. View our privacy policy here.