Gas-phase synthesis of nanoparticles of group 12 chalcogenides

(Note: The full text of this document is currently only available in the PDF Version )

Nigel L. Pickett, Frank. G. Riddell, Douglas F. Foster, David J. Cole-Hamilton and John R. Fryer


Abstract

The effect of pyridine addition upon the gas-phase reactions of hydrogen sulfide (H2S) or hydrogen selenide (H2Se) with either dimethylcadmium (Me2Cd) or dimethylzinc (Me2Zn) has been investigated. The deposits of CdS, CdSe, ZnSe or ZnS which form have been analysed by powder X-ray diffraction (PXRD), elemental analysis and transmission electron microscopy (TEM). At ambient temperatures the deposits consist of particles in the nanocrystalline size range of the hexagonal phase. The average particle size within the deposits is dependent upon the concentration of pyridine in the gas phase, the temperature at which the reactants are mixed and, in the case of ZnSe, whether an inert (He) or reducing (H2) carrier gas is used. At ambient temperatures in an inert carrier gas, the control of particle size exerted by pyridine decreases in the order ZnS > CdS > CdSe > ZnSe, although in hydrogen, the prereaction between Me2Zn and H2Se could be almost completely eliminated by raising the temperature. Further investigation of CdS deposits have been carried out by photoacoustic spectroscopy (PAS) to access the band-gap, and solid-state 13C and 113Cd NMR to probe the surface state of the particles. Elemental analysis and the NMR studies suggest that pyridine binds through the lone pair of the nitrogen to surface metal atoms on growing particles, inhibiting further particle growth. The particle size is greatly dependent upon the strength of the pyridine–surface metal atom interaction, the acidity of the EH bond (E=S or Se) and the polarity of the MMe bond (M=Zn or Cd). In hydrogen, it is proposed that amide species may form and be responsible for growth inhibition.


References

  1. S. Fujiita, Y. Matsuda and A. Sasaki, J. Crystal Growth, 1984, 68, 231 Search PubMed.
  2. A. Yoshikawa, S. Muto, S. Yamaga and H. Kasai, J. Crystal Growth, 1988, 86, 279 Search PubMed.
  3. S. Yamaga, A. Yoshikawa and H. Kasai, J. Crystal Growth, 1988, 86, 252 Search PubMed.
  4. A. C. Jones, J. Crystal Growth, 1994, 145, 505 Search PubMed.
  5. P. J. Wright, B. Cockayne, A. J. Williams, A. C. Jones and E. D. Orrell, J. Crystal Growth, 1987, 84, 552 Search PubMed.
  6. M. J. Almond, M. P. Beer, M. G. B. Drew and D. A. Rice, J. Organomet. Chem., 1991, 421, 129 CrossRef CAS.
  7. B. Cockayne, P. J. Wright, A. J. Armstrong, A. C. Jones and E. D. Orrell, J. Crystal Growth, 1988, 91, 57 Search PubMed.
  8. A. C. Jones, J. Phys. Paris II, 1991, C2, 253 Search PubMed.
  9. K. F. Jensen, A. Annapragada, K. L. Ho, J.-S. Huh, S. Patnaik and S. Salim, J. Phys. Paris II, 1991, C2, 243 Search PubMed.
  10. P. J. Wright, P. J. Parbrook, B. Cockayne, A. C. Jones, E. D. Orrell, K. P. O'Donnell and B. Henderson, J. Crystal Growth, 1989, 94, 441 Search PubMed.
  11. P. J. Wright, B. Cockayne, P. J. Parbrook, A. C. Jones, P. O'Brien and J. R. Walsh, J. Crystal Growth, 1990, 104, 601 Search PubMed.
  12. M. J. Almond, M. P. Beer, K. Hagen, D. A. Rice and P. J. Wright, J. Mater. Chem., 1991, 1, 1065 RSC.
  13. O. Briot, M. DiBlasio, T. Cloitre, N. Briot, P. Bigenwald, B. Gil, M. Averous, R. L. Aulombard, L. M. Smith, S. A. Rushworth and A. C. Jones, Mater. Res. Soc. Symp. Proc., 1994, 340, 515 CAS.
  14. P. J. Wright, B. Cockayne, P. J. Parbrook, P. E. Oliver and A. C. Jones, J. Crystal Growth, 1991, 108, 525 Search PubMed.
  15. M. A. Malik, M. Motevalli, J. R. Walsh, P. O'Brien and A. C. Jones, J. Mater. Chem., 1995, 5, 731 RSC.
  16. O. F. Z. Khan, P. O'Brien, P. A. Hamilton, J. R. Walsh and A. C. Jones, Chemtronics, 1989, 4, 244 Search PubMed.
  17. R. E. Linney and D. K. Russell, J. Mater. Chem., 1993, 3, 587 RSC.
  18. H. Dumont, A. Marbeuf, J. Bouree and O. Gorochov, J. Mater. Chem., 1992, 2, 923 RSC.
  19. H. Dumont, A. Marbeuf, J. Bouree and O. Gorochov, J. Mater. Chem., 1993, 3, 1075 RSC.
  20. D. A. Jackson, J. Crystal Growth, 1989, 94, 459 Search PubMed.
  21. H. Weller, Angew. Chem., Int. Ed. Engl., 1993, 32, 41 CrossRef.
  22. H. Weller, Adv. Mater., 1993, 5, 88 CrossRef CAS.
  23. X. Li, J. R. Fryer and D. J. Cole-Hamilton, J. Chem. Soc., Chem. Commun., 1994, 1715 RSC.
  24. N. L. Pickett, D. F. Foster and D. J. Cole-Hamilton, J. Mater. Chem., 1996, 6, 507 RSC.
  25. N. L. Pickett, D. F. Foster and D. J. Cole-Hamilton, J. Crystal Growth, 1997, 170, 476 Search PubMed.
  26. D. F. Foster and D. J. Cole-Hamilton, Inorg. Synth., 1997, 31, 29 CAS.
  27. A. Rasencwaig, Chemical analysis, Vol 57 Photoacoustics and Photoacoustic Spectroscopy, Wiley, New York, 1980 Search PubMed.
  28. S. F. Bertram in Handbook of X-Rays, ed. E. F. Kaelble, McGraw-Hill, New York, 1967, pp 17–19 Search PubMed.
  29. S. W. Haggata, X. Li and D. J. Cole-Hamilton, J. Mater. Chem., 1996, 6, 1771 RSC.
  30. A. Guinier, X-Ray Diffraction, W. H. Freeman, San Francisco, 1963, pp. 226–237 Search PubMed.
  31. R. B. Somoano, Angew. Chem., Int. Ed. Engl., 1978, 17, 238 CrossRef CAS.
  32. P. O'Brien and S. Haggata, Adv. Mater. Opt. Electron., 1995, 5, 117 CrossRef.
  33. M. G. Bawendi, A. R. Kortan, M. L. Steigerwald and L. E. Brus, J. Chem. Phys, 1989, 91, 7282 CrossRef CAS.
  34. A. Baronnet, Rev. Mineral., 1992, 27, 231 Search PubMed.
  35. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford 1974 Search PubMed.
  36. A. J. De Koning, J. Boersma and G. J. M. Van Der Kerk, J, Organomet. Chem, 1980, 195, 1 CrossRef CAS.
  37. N. A. Bell and G. E. Coates, J. Chem. Soc. A, 1968, 823 RSC.
  38. W. S. Rees, D. M. Green, T. J. Anderson, E. Bretschneider, B. Pathangey, C. Park and J. Kim, J. Electron. Mater., 1992, 21, 361 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.