Effects of organic and inorganic network development on the optical properties of ORMOSILs

(Note: The full text of this document is currently only available in the PDF Version )

John H. Harreld, Bruce Dunn and Jeffrey I. Zink


Abstract

The preparation of organic–inorganic hybrids based on the use of sol–gel chemistry offers a creative approach for synthesizing novel materials. One of the most promising directions for organic–inorganic hybrid materials is in the area of optics. An important consideration is that optical losses from scattering will arise in these materials if separation of the organic and inorganic phases occurs. The difficulties in obtaining such hybrid structures without phase separation is investigated for polymethylmethacrylate based organically modified silicates. Here, three approaches for initiating polymerization reactions of the organic component are reported. The influence of the organic and inorganic network developments is correlated with optical transparency. Tuning organic and inorganic reaction rates is found to be insufficient in overcoming phase separation. The most successful method involved dissolving the sol components in a common solvent before instituting polymerization treatments. Materials synthesized by this approach satisfy three important criteria for organic–inorganic hybrid laser host materials: an optically transparent matrix with little or no phase separation; comparable volume fractions of organic and inorganic components to obtain the benefits of both phases; and a high degree of polymerization reactions within the acrylic phase.


References

  1. C. Sanchez and F. Ribot, New J. Chem., 1994, 18, 1007 Search PubMed.
  2. P. Judeinstein and C. Sanchez, J. Mater. Chem., 1996, 6, 511 RSC.
  3. J. Wen and G. L. Wilkes, Chem. Mater., 1996, 8, 1667 CrossRef CAS.
  4. Better Ceramics Through Chemistry VII, ed. G. L. Wilkes, D. W. Schaefer, C. Sanchez and B. Coltrain, Mater. Res. Soc. Symp., 1996, in press Search PubMed.
  5. Sol–Gel Optics, ed. J. D. Mackenzie, SPIE 1990, vol. 1328; 1992, vol. 1758; 1994, vol. 2228 Search PubMed.
  6. J. I. Zink and B. Dunn, in Sol–Gel Optics—Processing and Applications, ed. L. C. Klein, Kluwer Academic, Nowell, MA, 1994, pp. 301–326 Search PubMed.
  7. M. Canva, P. Georges, J.-F. Perelgritz, A. Brum, F. Chaput and J.-P. Boilot, Appl. Opt., 1995, 34, 428 CAS.
  8. B. Dunn, F. Nishida, R. Toda, J. I. Zink, T. Allik, S. Chandra and J. A. Hutchinson, New Materials for Solid State Lasers, Mater. Res. Soc. Symp., 1994, pp. 267–277 Search PubMed.
  9. M. D. Rhan and T. A. King, Appl. Opt., in press Search PubMed.
  10. V. S. Nechitailo, in Solid State Lasers V, ed. R. Scheps, Proc. SPIE, 1996, 2698, pp. 8–37 Search PubMed.
  11. C. J. T. Landry, B. K. Coltrain and B. K. Brady, Polymer, 1992, 33, 1486 CrossRef CAS.
  12. B. K. Coltrain, C. J. T. Landry, J. M. O'Reilly, A. M. Chamberlain, G. A. Rakes, J. S. Sedita, L. W. Kelts, M. R. Landry and V. K. Long, Chem. Mater., 1993, 5, 1445 CrossRef CAS.
  13. C. L. Jackson, B. J. Bauer, A. I. Nakatani and J. D. Barnes, Chem. Mater., 1996, 8, 727 CrossRef CAS.
  14. R. Toda, Master's thesis, University of California, Los Angeles, 1994.
  15. F. Nishida, Master's thesis, University of California, Los Angeles, 1991.
  16. C. J. Brinker and G. W. Scherer, Sol–Gel Science, Academic Press, New York, 1990, pp. 175–181 Search PubMed.
  17. S. Damoun, R. Papin, G. Ripault, M. Rousseau, J. C. Rabadeux and D. Durand, J. Raman Spectrosc., 1992, 23, 385 CAS.
  18. J. Clarkson, S. M. Mason and K. P. J. Williams, Spectrochim. Acta, Part A, 1991, 47, 1345 CrossRef.
  19. E. Gulari, K. McKeigue and K. Y. S. Ng, Macromolecules, 1984, 17, 1822 CrossRef CAS.
  20. S. D. Hanna, B. Dunn and J. I. Zink, J. Non-Cryst. Solids, 1994, 167, 239 CrossRef CAS.
  21. B. M. Novak and C. Davies, Macromolecules, 1991, 24, 5481 CrossRef CAS.
  22. H. Krug and H. Schmidt, New J. Chem., 1994, 18, 1125 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.