Engineering of peptide β-sheet nanotapes

(Note: The full text of this document is currently only available in the PDF Version )

Amalia Aggeli, Mark Bell, Neville Boden, Jeff N. Keen, Tom C. B. McLeish, Irina Nyrkova, Sheena E. Radford and Alexander Semenov


Abstract

A set of principles are outlined for the design of short oligopeptides which will self-assemble in appropriate solvents into long, semi-flexible, polymericβ-sheet nanotapes. Their validity is demonstrated by experimental studies of an 11-residue peptide (DN1) which forms nanotapes in water, and a 24-residue peptide (K24) which forms nanotapes in non-aqueous solvents such as methanol. Circular dichroism (CD) spectroscopy studies of the self-assembly behaviour in very dilute solutions (µm) reveal a simple transition from a random coil-to-β-sheet conformation in the case of DN1, but a more complex situation for K24. Association of DN1 is very weak up to a concentration of 40 µm at which there is a sudden increase in the fraction of peptide in the β-sheet structure, indicative of an apparent ‘critical tape concentration’. This is shown to arise from a two-step self-assembly process: the first step being a transition from a random coil to an extended β-strand conformation, and the second the addition of this β-strand to a growing β-sheet. Both peptides are shown to gel their solvents at concentrations above 2×10-3 volume fraction: these gels are stable up to the boiling point of the solvents. Rheology measurements on gels of the 24-residue peptide in 2-chloroethanol reveal that the tapes form an entangled network with a mesh size of 10–100 nm for peptide volume fractions 0.03–0.003; the persistence length of the tape is 13 nm or greater, indicative of a moderately rigid polymer; the tapes are about a single molecule in thickness. The mechanical properties of the gels in many respects are comparable to those of natural biopolymers such as gelatin, actin, amylose and agarose.


References

  1. J.-M. Lehn, M. Mascal, A. DeCian and J. Fischer, J. Chem. Soc., Chem. Commun., 1990, 479 RSC.
  2. J. A. Zerkowski, C. T. Seto, D. A. Wierda and G. M. Whitesides, J. Am. Chem. Soc., 1990, 112, 9025 CrossRef CAS.
  3. J. A. Zerkowski and G. M. Whitesides, J. Am. Chem. Soc., 1994, 116, 4298 CrossRef CAS.
  4. K. Hanabusa, T. Miki, Y. Tanaguchi, T. Koyama and H. Shirai, J. Chem. Soc., Chem. Commun., 1993, 1382 RSC.
  5. G. J. Vroege and H. N. W. Lekkerkerker, Rep. Prog. Phys., 1992, 55, 1241 CrossRef CAS.
  6. I. A. Nyrkova, A. M. Semenov, J. F. Joanny and A. R. Khokhlov, J. Phys. II, 1996, 6, 1411 Search PubMed.
  7. T. E. Creighton, Proteins: Structures and molecular properties, Freeman, New York, 1993, 2nd edn Search PubMed.
  8. M. T. Krejchi, E. D. T. Atkins, A. J. Waddon, M. J. Fournier, T. L. Mason and D. A. Tirell, Science, 1994, 265, 1427 CrossRef CAS.
  9. D. G. Osterman and E. T. Kaiser, J. Cell. Biochem., 1985, 29, 57 CrossRef CAS.
  10. T. Takumi, H. Ohkubo and S. Nakanishi, Science, 1988, 242, 1042 CAS.
  11. A. Aggeli, N. Boden, Y. L. Cheng, J. B. C. Findlay, P. F. Knowles, P. Kovatchev and P. J. H. Turnbull, Biochemistry, 1996, 35, 16 213 CrossRef CAS.
  12. K. C. Smith and L. Regan, Science, 1995, 270, 980 CrossRef.
  13. G. D. Fasman, Prediction of Protein Structure and the Principles of Protein Conformation, Plenum Press, New York, 1989 Search PubMed.
  14. Yu. N. Chirgadze and N. A. Nevskaya, Biopolymers, 1976, 15, 607 and 627 CrossRef CAS.
  15. M. J. Kamlet, J. L. M. Abboud, M. H. Abraham and R. W. Taft, J. Org. Chem., 1983, 48, 2877 CrossRef CAS.
  16. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986 Search PubMed.
  17. J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1970 Search PubMed.
  18. A. H. Clark and S. B. Ross-Murphy, Adv. Polym. Sci., 1987, 83, 57 CAS.
  19. H. McEvoy, S. B. Ross-Murphy and A. H. Clark, Polymer, 1985, 26, 1483 CrossRef CAS.
  20. A. H. Clark, M. Watase, K. Nishinari and S. B. Ross-Murphy, Macromolecules, 1989, 22, 346 CrossRef CAS.
  21. S. B. Ross-Murphy and K. P. Shatwell, Biorheology, 1993, 30, 217 CAS.
  22. T. M. Clausen, P. K. Vinson, J. R. Minter, H. T. Davis, Y. Talmon and W. G. Miller, J. Phys. Chem., 1992, 96, 474 CrossRef.
  23. D. A. Kirschner, H. Inouye, L. K. Duffy, A. Sinclair, M. Lind and D. J. Selkoe, Proc. Natl. Acad. Sci. USA, 1987, 84, 6953 CAS.
  24. N. Geisler, T. Heimburg, J. Schuneman and K. Weber, J. Str. Biol., 1993, 110, 205 Search PubMed.
  25. K. Hanabusa, Y. Naka, T. Koyama and H. Shirai, J. Chem. Soc., Chem. Commun., 1994, 2683 RSC.
  26. H. T. Stock, N. J. Turner and R. McCague, J. Chem. Soc., Chem. Commun., 1995, 2063 RSC.
  27. R. Vegners, I. Shestakova, I. Kalvinsh, R. M. Ezzell and P. A. Janmey, J. Pept. Sci., 1995, 1, 371 CAS.
  28. A. H. Clark and S. B. Ross-Murphy, Adv. Polym. Sci., 1987, 83, 57 CAS.
  29. Yu. N. Chirgadze, B. V. Shestopalov and S. Yu. Venyaminov, Biopolymers, 1973, 12, 1337 CrossRef CAS.
  30. S. Brahms and J. Brahms, J. Mol. Biol., 1980, 138, 149 CrossRef CAS.
  31. C. Blake and L. Serpell, Structure, 1996, 4, 989 CrossRef CAS.
  32. E. Terzi, G. Hölzemann and J. Seelig, Biochemistry, 1994, 33, 1345 CrossRef CAS.
  33. M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee and N. Kzazanovich, Nature, 1993, 366, 324 CrossRef CAS.
  34. S. Zhang, T. Holmes, C. Lockshin and A. Rich, Proc. Natl. Acad. Sci. USA, 1993, 90, 3334 CAS.
  35. W. K. Surewicz and H. H. Mantsch, Biochem. Biophys. Acta, 1988, 952, 115 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.