Magnetostructural study of substituted α-nitronyl aminoxyl radicals with chlorine and hydroxy groups as crystalline design elements

(Note: The full text of this document is currently only available in the PDF Version )

Oriol Jürgens, Joan Cirujeda, Montse Mas, Ignasi Mata, Araceli Cabrero, José Vidal-Gancedo, Concepció Rovira, Elies Molins and Jaume Veciana


Abstract

We present a new family of phenyl substituted α-nitronyl aminoxyl radicals which contain hydroxy- and chlorine-substituents as crystal engineering tools. The magnetic behaviour of these radicals strongly differs in dimensionality and strength, showing in all cases antiferromagnetic interactions. We have determined the X-ray crystal structure and analysed the crystal packings of these radicals. From this analysis all the observed magnetic properties can be conveniently rationalized by only considering the close contacts of NO groups of neighbouring molecules according to the generally accepted mechanisms for intermolecular magnetic interactions. Beside the strong O–H‥O(–N) hydrogen bonds and the weaker C–H‥O(–N) hydrogen bonds, weak Cl‥H bonds also seem to play a significant role in determining the molecular arrangement in the solid state and, therefore, the magnetic properties. In only one case are close Cl‥Cl contacts observed, pointing to attractive interactions between chlorine atoms.


References

  1. M. Tamaura, Y. Nakazawa, D. Shiomi, K. Nozawa, Y. Hosokoshi, M. Ishikawa, M. Takahashi and M. Kinoshita, Chem. Phys. Lett., 1991, 186, 401 CrossRef CAS.
  2. (a) J. Veciana, J. Cirujeda, C. Rovira and J. Vidal-Gancedo, Adv. Mater., 1995, 7, 221 CAS; (b) J. Cirujeda, C. Rovira and J. Veciana, Synth. Met., 1995, 71, 1799 CrossRef CAS; (c) J. Cirujeda, E. Hernández-Gasió, F. Lanfranc de Panthou, J. Laugier, M. Mas, E. Molins, C. Rovira, J. J. Novoa, P. Rey and J. Veciana, Mol. Cryst. Liq. Cryst., 1995, 271, 1 Search PubMed.
  3. (a) H. Hernández-Gasió, M. Mas, E. Molins, C. Rovira and J. Veciana, Angew. Chem., Int. Ed. Engl., 1993, 32, 882 CrossRef; (b) J. Cirujeda, E. Hernández-Gasió, C. Rovira, J. L. Stanger, P. Turek and J. Veciana, J. Mater. Chem., 1995, 5, 243 RSC.
  4. J. Cirujeda, M. Mas, E. Molins, F. Lanfranc de Panthou, J. Laugier, J. G. Park, C. Paulsen, P. Rey, C. Rovira and J. Veciana, J. Chem. Soc., Chem. Commun., 1995, 709 RSC.
  5. T. Sugawara, M. M. Matsuskita, A. Izuoka, N. Wada, N. Takeda and M. Ishikawa, J. Chem. Soc., Chem. Commun., 1994, 1723 RSC.
  6. R. Taylor and O. Kennard, J. Am. Chem. Soc., 1982, 104, 5063 CrossRef CAS.
  7. (a) J. A. R. P. Sarma and G. R. Desiraju, Acc. Chem. Res., 1986, 19, 222 CrossRef CAS; (b) G. R. Desiraju, in Organic Solid State Chemistry, ed., G. R. Desiraju, Elsevier, 1987, p. 519 Search PubMed; (c) J. A. R. P. Sarma and G. R. Desiraju, Chem. Phys. Lett., 1985, 117, 160 CrossRef CAS.
  8. G. R. Desiraju, in Organic Solid State Chemistry, ed., G. R. Desiraju, Elsevier, 1987, p. 539 Search PubMed.
  9. N. W. Thomas and G. R. Desiraju, Chem. Phys. Lett., 1984, 110, 99 CrossRef CAS.
  10. J. H. Osiecki and E. F. Ullman, J. Am. Chem. Soc., 1968, 90, 1078 CrossRef; E. F. Ullman, J. H. Osiecki, D. G. B. Boocock and R. J. Darcy, J. Am. Chem. Soc., 1972, 94, 7049 CrossRef CAS.
  11. M. Lamchen and T. W. Mittag, J. Chem. Soc. C, 1966, 2300 RSC.
  12. (a) H. M. McConnell, J. Phys. Chem., 1963, 39, 1910 CrossRef CAS; (b) J. B. Goodenough, Magnetism and the Chemical Bond, Interscience, New York, 1963, p. 163 Search PubMed; (c) H. M. McConnell, Proc. R. A. Welch Found, Conf. Chem. Res., 1967, 11, 144 Search PubMed.
  13. In some aspects the McConnell I mechanism is a restatement of concepts introduced many years before by Heitler and London. Thus, dominant contact of atoms of two neighbouring molecules with spin densities having the same sign is equivalent to a nonzero overlap integral between their singly occupied molecular orbitals (SOMO) because such SOMOs are located on those atoms.
  14. M. S. Davis, K. Morokuma and R. W. Kreilick, J. Am. Chem. Soc., 1974, 96, 652 CrossRef.
  15. J. A. D'Anna and J. H. Wharton, J. Chem. Phys., 1970, 53, 4047 CrossRef CAS.
  16. (a) M. S. Davis, K. Morokuma and R. W. Kreilick, J. Am. Chem. Soc., 1972, 94, 5588 CrossRef CAS; (b) J. W. Neely, G. F. Hatch and R. W. Kreilick, J. Am. Chem. Soc., 1974, 96, 652 CrossRef.
  17. (a) J. Veciana, J. Cirujeda and O. Jürgens, Manuscript in preparation; (b) J. Cirujeda, Ph D Thesis, 1997, Universitat Ramon Llull.
  18. C. W. Wang and S. F. Watkins, J. Chem. Soc., Chem. Commun., 1973, 888 RSC.
  19. (a) J.-L. Stagner, Doctoral Thesis, 1995, Université Louis Pasteur de Strasbourg; (b) Y. Hosokoshi, Doctoral Thesis, 1995, University of Tokyo.
  20. N. Ramasubbu, R. Parthasarathy and P. Murray-Rust, J. Am. Chem. Soc., 1986, 108, 4308 CrossRef CAS.
  21. G. R. Desiraju, Acc. Chem. Res., 1991, 24, 290 CrossRef CAS.
  22. The equation used to fit the data corresponds to a modified Bleaney-Bowers equation which includes a multiplying term to take account of intradimer interactions: x =[Ng2µB2/3k(Tθ)][1 +(1/3) exp(–2J/kT)]–1. See R. L. Carlin in, Magnetochemistry, Springer Verlag, Berlin, 1986, p. 88 Search PubMed.
  23. T. Barnes and J. Riera, Phys. Rev. B, 1994, 50, 6817 CrossRef CAS.
  24. However, the fitting of the experimental data for 5 is slightly improved if the same model as for radical 2 is employed, with an intradimer interaction of J/kB=–50.1 K and an additional interdimer term of θ=+10.4 K, corresponding to the magnetic interactions among the dimers.
Click here to see how this site uses Cookies. View our privacy policy here.