Oxalate coprecipitation route to the piezoelectric Pb(Zr,Ti)O3 oxide

(Note: The full text of this document is currently only available in the PDF Version )

Jin-Ho Choy, Yang-Su Han and Seung-Joo Kim


Abstract

A homogeneous and stoichiometric Pb(Zr,Ti)O3 (PZT) fine powder was prepared by thermal decomposition of the metal oxalate precursor formed by the precipitation reaction of the metallic components in aqueous solution with oxalic acid. Theoretical solubility isotherms of metal oxalates were established as a function of the solution pH and the metal ion concentration using thermodynamic equilibrium constants for the corresponding metal salts in aqueous solution. Through the theoretical solubility isotherms, the optimum pH domain for preparing the homogeneous and stoichiometric PZT–oxalate precursor was found to be 3–4. Crystalline PZT with tetragonal symmetry began to form after heating the precursor at 600 °C and a monophasic PZT powder consisting of submicrometer (0.3–0.5 µm) particles with spherical shape could be obtained after calcination at 800 °C for 2 h. The oxalate-derived PZT powder showed a good sinterability even below 1150 °C where the piezoelectric properties were optimized.


References

  1. B. Jaffe, W. R. Cook and H. Jaffe, Piezoelectric Ceramics, Academic Press, New York, 1971 Search PubMed.
  2. K. Okazaki, Ferroelectrics, 1982, 41, 77 CAS.
  3. D. L. Hankey and J. V. Biggers, J. Am. Ceram. Soc., 1981, 64, 172.
  4. K. Kakegawa, J. Mohri, S. Shirasaki and K. Takahashi, J. Am. Ceram. Soc., 1982, 65, 515.
  5. R. R. Krishnan and P. Ramakrishnan, Br. Ceram. Trans. J., 1988, 87, 99.
  6. T. R. Shrout, P. Papet, S. Kim and G. S. Lee, J. Am. Ceram. Soc., 1990, 73, 1862 CAS.
  7. T. Fukui, C. Sakurai and M. Okuyama, J. Mater. Res., 1992, 7, 791 CrossRef CAS.
  8. N. Okada, K. Ishikawa, K. Murakami, T. Nomura, M. Hagino, N. Nishino and U. Kihara, Jpn. J. Appl. Phys., 1992, 31, 304.
  9. C. D. Chandler, C. Roger and M. J. Hampden-Smith, Chem. Rev., 1993, 93, 1205 CrossRef CAS.
  10. R. Lal, R. Krishnan and P. Ramakrishinan, Mater. Sci. Eng., 1987, 96, L25 Search PubMed.
  11. R. Lal, N. M. Gokhale, R. Krishnan and P. Ramakrishinan, J. Mater. Sci., 1989, 24, 2911 CrossRef CAS.
  12. M. A. Zaghete, S. O. P. Santos, J. A. Varela, E. Longo and Y. P. Mascarenhas, J. Am. Ceram. Soc., 1992, 75, 2088 CAS.
  13. V. R. Palkar and M. S. Multani, Mater. Res. Bull., 1979, 14, 1353 CrossRef CAS.
  14. T. R. N. Kutty and R. Balachandran, Mater. Res. Bull., 1984, 19, 1479 CrossRef.
  15. A. P. Singh, S. K. Mishra, D. Pandey, C. D. Prasad and R. Lal, J. Mater. Sci., 1993, 28, 5050 CrossRef CAS.
  16. R. Balachandran and T. R. N. Kutty, Mater. Chem. Phys., 1984, 10, 287 CrossRef CAS.
  17. H. Yamamura, S. Kuramoto, H. Haneda, A. Watanabe and S. Shirasaki, J. Ceram. Soc. Jpn., 1986, 92, 470.
  18. P. P. Phule and S. H. Risbud, J. Mater. Sci., 1990, 25, 1169 CAS.
  19. H. Yamamura, A. Watanabe, S. Shirasaki, Y. Moriyoshi and M. Tanada, Ceram. Int., 1985, 11, 17 CrossRef CAS.
  20. K. Saegusa, W. E. Rhine and H. K. Bowen, J. Am. Ceram. Soc., 1993, 76, 1495 CAS.
  21. D. H. Chen, C. Y. Shei, S. R. Sheen and C. T. Chang, Jpn. J. Appl. Phys., 1991, 30, 1198 CAS.
  22. M. Dasgupta and S. G. Dixit, Jpn. J. Appl. Phys., 1992, 31, 35 CAS.
  23. J. H. Choy, Y. S. Han, J. T. Kim and Y. H. Kim, J. Mater. Chem., 1995, 5, 57 RSC.
  24. J. H. Choy, Y. S. Han, Y. H. Kim and K. S. Suh, Jpn. J. Appl. Phys., 1993, 32, 1154 CAS.
  25. J. H. Choy, Y. S. Han, S. W. Song and S. H. Chang, J. Mater. Chem., 1994, 4, 1271 RSC.
  26. J. H. Choy, Y. S. Han and Y. H. Kim, Mater. Lett., 1993, 16, 226 CrossRef CAS.
  27. J. H. Choy, Y. S. Han and S. W. Song, Mater. Lett., 1994, 19, 257 CrossRef CAS.
  28. J. H. Choy, Y. S. Han and J. T. Kim, J. Mater. Chem., 1995, 5, 65 RSC.
  29. F. M. M. Morel, Principles of Aquatic Chemistry, John Wiley & Sons, New York, 1983 Search PubMed.
  30. S. Morgan, Aquatic Chemistry, John Wiley & Sons, New York, 1983 Search PubMed.
  31. G. M. H. Van De Velde and J. Venselaar, J. Inorg. Nucl. Chem., 1977, 39, 1363 CrossRef CAS.
  32. L. N. Klatt, Anal. Chem., 1970, 42, 1837 CrossRef CAS.
  33. T. Meites and L. Meites, J. Am. Chem. Soc., 1951, 73, 1161 CrossRef CAS.
  34. D. R. Turner, M. Whitfield and A. G. Dickson, Geochim. Cosmochim. Acta, 1991, 45, 855 CrossRef CAS.
  35. C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations, Wiley & Sons, New York, 2nd edn., 1976 Search PubMed.
  36. L. M. Zaitsev and G. S. Bochkarev, Zh. Neorg. Khim., 1964, 9, 2122 Search PubMed.
  37. A. K. Babko and L. I. Dubovenko, Izvest. Vyssh. Uchebn. Zaved, Khim. Khim. Technol., 1960, 3, 226 Search PubMed.
  38. H. Bilinski, M. Branica and L. G. Sillen, Acta Chem. Scand., 1966, 20, 853 CAS.
  39. H. Bilinski, B. Pokric and Z. Pucar, J. Inorg. Nucl. Chem., 1971, 33, 3409 CrossRef.
  40. S. Bhattacharjee, M. K. Parica and H. S. Muiti, Ceram. Int., 1992, 18, 295 CrossRef CAS.
  41. A. K. Babko and L. I. Duvobenko, Zh. Neorg. Khim., 1959, 4, 372 Search PubMed.
  42. H. Jaffe, IRE Proc., 1961, 1161 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.