High-resolution solid-state magic angle spinning nuclear magnetic resonance studies on the layered antimony hydrogen phosphate, HSb(PO4)2·2H2O, and its reaction products with tetrakis(pyridyl)iron(II) chloride

(Note: The full text of this document is currently only available in the PDF Version )

Simon Carlino, Michael J. Hudson and William J. Locke


Abstract

The antimony hydrogen phosphate, HSb(PO4)2 ·2H2O (denoted H1SbP2 ·2H2O), has been synthesised via the ion exchange of crystalline KSb(PO4)2 , (K1SbP2), with 9 m HNO3 . Scanning electron microscopy (SEM) confirmed that the crystalline K1SbP2 was formed by the so-called ‘deck of cards’ mechanism to give randomly orientated lamellae. The synthesised H1SbP2 ·2H2O host material was studied using 1H and 31P magic angle spinning nuclear magnetic resonance (MAS NMR) techniques. Intercalation studies were carried out using tetrakis(pyridyl)iron(ii) chloride, [Fe(py)4Cl2 ]·H2O. The resulting products were analysed using powder X-ray diffraction (PXRD) and 31P MAS NMR techniques. The former suggested that the [Fe(py)4Cl2 ]·H2O complex lost its water of crystallisation during the reaction and did not intercalate in its intact state between adjacent layers of the H1SbP2 ·2H2O crystallites. 31P MAS NMR data suggested that the H1SbP2 ·2H2O–[Fe(py)4Cl2 ] reaction products contained phosphorus resonances which could be assigned as belonging to (i) unaltered host H1SbP2 ·2H2O (protonated) phosphate groups, (ii) phosphate groups bonded to the intercalating species. In addition, a separate, QP3 , resonance was also noted which was thought to arise from a chemically unaltered phosphate group of the host H1SbP2 ·2H2O perturbed by the close proximity of the sorbed [Fe(py)4 ]2+ cationic species.


References

  1. M. J. Hudson, W. J. Locke and P. C. H. Mitchell, J. Mater. Chem., 1995, 5, 159 RSC.
  2. Y. Piffard, S. Oyetola, S. Courant and A. Lachgar, J. Solid State Chem., 1985, 60, 209 CrossRef CAS.
  3. E. Husson, M. Durand-Le Floch, C. Doremieux-Morin, S. Deniard and Y. Piffard, Solid State Ionics, 1989, 35, 133 CrossRef.
  4. Y. Piffard, A. Verbaere, S. Oyetola, S. Deniard-Courant and M. Tournoux, Eur. J. Solid State Inorg. Chem., 1989, 26, 113 CAS.
  5. A. Clearfield and G. D. Smith, Inorg. Chem., 1969, 8, 431 CrossRef CAS.
  6. S. Carlino and W. J. Locke, unpublished results.
  7. G. J. Long and W. A. Baker, J. Chem. Soc. A, 1971, 2956 RSC.
  8. R. M. Golding, K. F. Mok and J. F. Duncan, Inorg. Chem., 1966, 5, 774 CrossRef CAS.
  9. W. F. Little and G. J. Long, Inorg. Chem., 1978, 17, 3401 CrossRef.
  10. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, McGraw-Hill, London, 3rd edn., 1980, p. 37 Search PubMed.
  11. W. J. Locke, Ph.D. Thesis, University of Reading, 1993.
  12. G. Alberti, in Multifunctional Mesoporous Inorganic Solids, ed. M. J. Hudson and C. A. C. Sequira, NATO-ASI Ser. C, vol. 400, Van Nostrand Reinhold, Dordrecht, 1993 Search PubMed.
  13. G. J. Long and P. J. Clarke, Inorg. Chem., 1978, 17, 1394 CrossRef CAS.
  14. F. Taulelle, C. Sanchez, J. Livage, A. Lachgar and Y. Piffard, J. Phys. Chem. Solids, 1988, 49, 299 CrossRef CAS.
  15. G. Engelhardt and D. Michel, High-Resolution Solid-state NMR of Silicates and Zeolites, John Wiley & Sons Ltd., Chichester, 1987, p. 142 Search PubMed.
  16. M. J. Hudson, A. D. Workman and R. J. W. Adams, Solid State Ionics, 1991, 46, 159 CrossRef CAS.
  17. R. K. Harris, L. H. Merwin and G. Hägele, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 1409 RSC.
  18. S. Carlino and M. J. Hudson, Solid State Ionics, submitted Search PubMed.
  19. J. Klinowski, personal communication.
  20. H. S. Gutowski and G. E. Pake, J. Chem. Phys., 1950, 18, 162 CrossRef.
  21. S. Carlino, Ph.D. Thesis, University of Reading, 1994.
  22. M. J. Hudson, W. J. Locke, P. C. H. Mitchell and X. Hu, Solid State Ionics, 1993, 61, 131 CrossRef CAS.
  23. A. B. Yaroslavtsev, Z. N. Prozorovskaya and V. F. Chuvaev, Russ. J. Inorg. Chem., 1990, 35, 619.
Click here to see how this site uses Cookies. View our privacy policy here.