Two-dimensional hydrogen-bonded assemblies: the influence of sterics and competitive hydrogen bonding on the structures of guanidinium arenesulfonate networks

(Note: The full text of this document is currently only available in the PDF Version )

Victoria A. Russell and Michael D. Ward


Abstract

Guanidinium and organosulfonate ions self-assemble into crystalline lattices described by robust two-dimensional hydrogen-bonded networks with the general formula [C(NH2)3 ]+RSO3- . These networks, which typically have quasihexagonal symmetry due to favourable hydrogen bonding between six guanidinium proton donors and six sulfonate electron lone pair acceptors, assemble in the third dimension by stacking in a manner which maximizes van der Waals interactions between R groups. The steric requirements of the R groups dictate whether this assembly results in interdigitated bilayer stacking in which all the R groups are orientated to one side of a given sheet or interdigitated single layer stacking in which R groups are orientated to both sides of a given hydrogen-bonded sheet. The two-dimensional network tolerates very different steric requirements of the R groups due to the ability to form either of these stacking motifs and to the inherent flexibility of the hydrogen-bonded network about one-dimensional hydrogen-bonding ‘hinges’. This flexibility allows the sheets to pucker in order to accommodate steric strain between R groups within the layers. We describe here the influence of substituents on the R groups whose steric and hydrogen bonding capacity influence the puckering of the two-dimensional guanidinium sulfonate network. In particular, we examine the X-ray crystal structures of the guanidinium salts of ferrocenesulfonate and methyl- and nitro-substituted benzenesulfonates. The retention of the hydrogen-bonding motif in spite of steric and hydrogen bonding interference by the R group substituents illustrates the robustness of the guanidinium sulfonate network. However, additional competing hydrogen bonding and sterics influence the crystal packing, and in the case of multiple substituents on the R groups, these factors may disrupt the guanidinium sulfonate network. Overall, this work demonstrates that the use of robust two-dimensional supramolecular modules can reduce the crystal engineering problem to the last remaining dimension, which can simplify the design of functional molecular materials.


References

  1. J.-M. Lehn, M. Mascal, A. DeCian and J. J. Fisher, J. Chem. Soc., Perkin Trans. 2, 1992, 461 RSC.
  2. E. Fan, L. Yang, S. J. Geib, T. C. Stoner, M. D. Hopkins and A. D. Hamilton, J. Chem. Soc., Chem. Commun., 1995, 1251 RSC.
  3. J. C. MacDonald and G. M. Whitesides, Chem. Rev., 1994, 94, 2383 CrossRef CAS.
  4. J. A. Zerkowski, J. C. MacDonald, C. T. Seto, D. A. Wierda and G. M. Whitesides, J. Am. Chem. Soc., 1994, 116, 4305 CrossRef CAS.
  5. J.-M. Lehn, M. Mascal, A. DeCian and J. J. Fisher, J. Chem. Soc., Chem. Commun., 1990, 479 RSC.
  6. X. Wang, M. Simard and J. D. Wuest, J. Am. Chem. Soc., 1994, 116, 12119 CrossRef CAS.
  7. M. Simard, D. Su and J. D. Wuest, J. Am. Chem. Soc., 1991, 113, 4696 CrossRef.
  8. O. Ermer and L. A. Lindenberg, Helv. Chim. Acta, 1991, 74, 825 CrossRef CAS.
  9. O. Ermer, J. Am. Chem. Soc., 1988, 111, 3747 CrossRef.
  10. M. J. Zaworotko, Chem. Soc. Rev., 1994, 283 RSC.
  11. V. A. Russell, C. C. Evans, W. Li and M. D. Ward, Science, in press Search PubMed.
  12. V. A. Russell and M. D. Ward, Chem. Mater., 1996, 8, 1654 CrossRef CAS.
  13. G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311 CrossRef CAS.
  14. V. A. Russell, M. C. Etter and M. D. Ward, J. Am. Chem. Soc., 1994, 116, 1941 CrossRef.
  15. V. A. Russell, M. C. Etter and M. D. Ward, Chem. Mater., 1994, 6, 1206 CrossRef CAS.
  16. V. A. Russell and M. D. Ward, Acta Crystallogr. Sect. B, 1996, 52, 209 CrossRef.
  17. V. A. Russell and M. D. Ward, Proceedings of the NATO Advanced Research Workshop on Modular Chemistry, September 9–12, Estes Park, Colorado, in press.
  18. M. C. Etter, J. Phys. Chem., 1991, 95, 4601 CrossRef CAS.
  19. M. E. Thompson, Chem. Mater., 1994, 6, 1168 CrossRef CAS.
  20. K. P. Reis, V. K. Joshi and M. E. Thompson, J. Catal., 1996, 161, 62 CrossRef CAS.
  21. G. Cao and T. E. Mallouk, J. Solid State Chem., 1991, 94, 59 CrossRef CAS.
  22. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1 RSC.
  23. G. R. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier, New York, 1989, p. 92ff Search PubMed.
  24. D. J. A. De Ridder and H. Schenk, Acta Crystallogr. Sect. B, 1995, 51, 221 CrossRef.
  25. G. R. Desiraju, Acc. Chem. Res., 1996, 29, 441 CrossRef CAS.
  26. G. R. Desiraju, Acc. Chem. Res., 1991, 24, 290 CrossRef CAS.
  27. J. A. R. P. Sarma and G. R. Desiraju, Acc. Chem. Res., 1986, 19, 222 CrossRef CAS.
  28. J. A. R. P. Sarma and G. R. Desiraju, J. Chem. Soc., Perkin Trans. 2, 1987, 1195 RSC.
  29. Z. Berkovitch-Yellin and L. Leiserowitz, Acta Crystallogr. Sect. B, 1984, 40, 159 CrossRef.
  30. K. Wozniak, H. He, J. Klinowski, W. Jones and E. Grech, J. Phys. Chem., 1994, 98, 13755 CrossRef CAS.
  31. D. M. Salunke and M. Vijayan, Int. J. Peptide Protein Res., 1981, 18, 348 Search PubMed.
  32. Y. Yokomori and D. J. Hodgson, Int. J. Peptide Protein Res., 1988, 31, 289 Search PubMed.
  33. V. A. Russell, PhD Thesis, University of Minnesota, 1995.
  34. A. Gavezzotti, in Structure correlation ed. H.-B. Burgi and J. D. Dunitz, VCH, New York, 1994, vol. 2, ch. 12 Search PubMedThe van der Waals volumes have also been reported as 13.67 and 16.8 (for nitro attached to carbon atom) cm3 mol–1 for methyl and nitro groups, respectively: A. Bondi, J. Phys. Chem., 1964, 68, 441 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.