Surface reactivity of SnO2 obtained by sol–gel type condensation: interaction with inert, combustible gases, vapour-phase H2O and air, as revealed by electron paramagnetic resonance spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

Carmen Canevali, Norberto Chiodini, Patrizia Di Nola, Franca Morazzoni, Roberto Scotti and Claudia L. Bianchi


Abstract

Electron paramagnetic resonance (EPR) studies have been carried out on lattice oxygen vacancies produced by the interaction of carbon monoxide with SnO2 obtained by sol–gel type condensation. Under a 0.5% CO–argon reducing atmosphere the vacancies can transfer electrons to Sn4+ producing Sn2+ centres. In air the lattice defects interact with molecular oxygen in a manner which depends on whether the gas reducing treatment was performed under dry or moist conditions. Defects that undergo oxygen interaction at the SnO2 surface, reduce O2 to O2- or O2- , depending on the temperature of the reaction with oxygen.


References

  1. F. Morazzoni, R. Scotti and S. Volonté, J. Chem. Soc., Faraday Trans., 1990, 86, 1587 RSC.
  2. F. Morazzoni, R. Scotti and N. Minnaia, J. Chem. Soc., Faraday Trans., 1991, 87, 493 RSC.
  3. F. Morazzoni, R. Scotti, P. Di Nola, C. Milani and D. Narducci, J. Chem. Soc., Faraday Trans., 1992, 88, 1691 RSC.
  4. F. Morazzoni, R. Scotti and N. Minnaia, Chim. Ind., 1992, 74, 330 Search PubMed.
  5. P. Di Nola, F. Morazzoni, R. Scotti and D. Narducci, J. Chem. Soc., Faraday Trans., 1993, 89, 3711 RSC.
  6. J. F. McAleer, P. T. Moseley, J. O. W. Norris and D. E. Williams, J. Chem. Soc., Faraday Trans., 1987, 83, 1323 Search PubMed.
  7. D. Kohl, Sens. Actuators, 1989, 18, 71 CrossRef CAS.
  8. G. Sberveglieri, in Sensori per il Monitoraggio Ambientale, Editrice Sintesi, Brescia, 1994, pp. 175–207 Search PubMed.
  9. A. Paul, in Chemistry of Glasses, Chapman and Hall, New York, 1990, pp. 51–85 Search PubMed.
  10. Y. Mizokawa and S. Nakamura, Jpn. J. Appl. Phys., Part 2, 1974, 253 Search PubMed.
  11. A. Bielanski and J. Haber, in Oxygen in Catalysis, Marcel Dekker Inc., New York, 1991, pp. 79–128 Search PubMed.
  12. M. J. Hampden Smith, T. A. Wark, A. Rheingold and J. C. Huffman, Can. J. Chem., 1991, 69, 121 CAS.
  13. E. A. Gulliver, J. W. Garvey, T. A. Wark, M. J. Hampden-Smith and A. Datye, J. Am. Ceram. Soc., 1991, 74, 1091 CAS.
  14. M. Egashira, M. Nakashima, S. Kawasumi and T. Seyama, J. Phys. Chem., 1981, 85, 4125 CrossRef CAS.
  15. P. G. Harrison and A. Guest, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 3383 RSC.
  16. M. J. Fuller, M. E. Warwick and A. Walton, J. Appl. Chem. Biotechnol., 1978, 28, 400 Search PubMed.
  17. M. Che and A. J. Tench, Adv. Catal., 1983, 32, 4.
  18. O. F. Schirmer and M. Scheffer, J. Phys. C: Solid State Phys., 1982, 15, L645 CrossRef CAS.
  19. E. De Frésart, J. Darville and J. M. Gilles, Appl. Surf. Sci., 1982, 11/12, 637.
  20. R. G. Egdell, S. Eriksen and W. R. Flavell, Surf. Sci., 1987, 192, 265 CAS.
  21. P. M. A. Sherwood, Phys. Rev., 1990, 41, 10151 Search PubMed.
  22. J. M. Themlin, M. Chtaïb, L. Henrard, P. Lambin, J. Darville and J. M. Gilles, Phys. Rev., 1992, 46, 2460 Search PubMed.
  23. P. B. Weisz, J. Chem. Phys., 1953, 21, 1531 CrossRef CAS.
  24. V. E. Henrich and P. A. Cox, in The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, 1994, p. 44 Search PubMed.
  25. C. Gaggiotti, A. Galdikas, S. Kaciulis, G. Mattogno and A. Setkus, Sens. Actuators B, 1995, 24/25, 516 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.