Zn K-edge EXAFS study of SILAR-grown zinc sulfide thin films

(Note: The full text of this document is currently only available in the PDF Version )

Seppo Lindroos, Yves Charreire, Tapio Kannianinen, Markku Leskelä and Simone Benazeth


Abstract

Zinc sulfide thin films grown by the successive ionic layer adsorption and reaction (SILAR) method have been characterized by extended X-ray absorption fine structure (EXAFS) measurements. The ZnS films were well crystallized even as-grown but annealing improved the crystallinity clearly. The films contained small amounts of oxygen and, according to the EXAFS results, oxygen in the SILAR-grown zinc sulfide thin films occurred as hydroxide ions both in the as-grown and in the annealed samples. The simulated radial distribution curves for two models, Zn(OH)2 /ZnS and ZnO/ZnS, were calculated to analyse the film composition. The ZnS thin films were also characterized by IR and electron spectroscopy for chemical analysis (ESCA) measurements.


References

  1. Y. F. Nicolau, Appl. Surf. Sci., 1985, 22/23, 1061 CrossRef.
  2. S. Lindroos, T. Kanniainen and M. Leskelä, Appl. Surf. Sci., 1994, 75, 70 CrossRef CAS.
  3. Y. F. Nicolau and J. C. Menard, J. Cryst. Growth, 1988, 92, 128 CrossRef CAS.
  4. Y. F. Nicolau and J. C. Menard, J. Appl. Electrochem., 1990, 204, 1063.
  5. S. Lindroos, T. Kanniainen, M. Leskelä and E. Rauhala, Thin Solid Films, 1995, 263, 79 CrossRef CAS.
  6. R. Ortega Borges, D. Lincot and J. Vedel, 11th E.C. Photovoltaic Solar Energy Conference, Montreux, 1992, p. 862 Search PubMed.
  7. J. M. Doña and J. Herrero, J. Electrochem. Soc., 1994, 141, 205 CAS.
  8. S. Lindroos, T. Kanniainen and M. Leskelä, J. Mater. Chem., 1996, 6, 1497 RSC.
  9. G. Tourillon, E. Dartyge, A. Fontaine, M. Lemonnier and F. Bartol, Phys. Lett. A, 1987, 121, 251 CrossRef CAS.
  10. D. Bonnin, P. Kaiser, C. Fretigny and J. Desbarres, Structures Fines d'Adsorption des Rayons X en Chimie, Ecole du C.N.R.S., Orsay, 1989, vol. 3, part 2 Search PubMed.
  11. H. D. Abruńa, J. H. White, M. J. Albarelli, G. M. Bommarita, M. J. Bedzyk and M. McMillan, J. Phys. Chem., 1988, 92, 7045 CrossRef CAS.
  12. Y. Charreire, A. Marbeuf, G. Tourillon, M. Leskelä, L. Niinistö, E. Nykänen, P. Soininen and O. Tolonen, J. Electrochem. Soc., 1992, 139, 619 CAS.
  13. A. G. McKale, B. W. Veal, A. P. Paulikas, S.-K. Chan and G. S. Knapp, J. Am. Chem. Soc., 1988, 110, 3763 CrossRef.
  14. Y. Charreire, D.-R. Svoronos, I. Ascone, O. Tolonen, L. Niinistö and M. Leskelä, J. Electrochem. Soc., 1993, 140, 2015 CAS.
  15. B. Mokili, M. Froment and D. Lincot, J. Phys. IV, 1995, 5, C3 Search PubMed.
  16. D. T. Atkins and R. M. Pashley, Langmuir, 1993, 9, 2232 CrossRef CAS.
  17. K. Atherton, G. Newbold and J. A. Hockey, Discuss. Faraday Soc., 1971, 52, 33 RSC.
  18. W. Hertl, Langmuir, 1988, 4, 594 CrossRef CAS.
  19. J. W. Kauffman, R. H. Hauge and J. L. Margrave, J. Phys. Chem., 1985, 89, 3541 CrossRef CAS.
  20. R. Gärd, Z.-X. Sun and W. Forsling, J. Colloid Interface Sci., 1995, 169, 393 CrossRef.
  21. Q. Yitai, S. Yi, C. Qianwang and C. Zuyao, Mater. Res. Bull., 1995, 30, 601 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.