Unsupported SiO2-based organic–inorganic membranes. Part 2: Surface features and gas permeation

(Note: The full text of this document is currently only available in the PDF Version )

Sandra Dirè, Eva Pagani, Riccardo Ceccato and Giovanni Carturan


Abstract

Gas permeation of unsupported hybrid membranes, obtained by co-hydrolysis of various Si(OEt)4 /MeSi(OEt)3 (TEOS/MTES) mixtures, is studied with Ar, He and N2 . The separation performance of these hybrid membranes is higher than for pure SiO2 sol–gel derived membranes and depends on chemical composition: a considerable increase in separation factor α(He/N2) is found as the amount of MTES increases; moreover, gas permeability decreases with increasing organic modification of the network. Membrane characterization is performed by N2 adsorption–desorption measurements and low-temperature differential scanning calorimetry (DSC) and dynamic contact angle (DCA) analyses. Data are related to chemical composition, affecting both the chemical nature of the surface and gas permeation. Results indicate that gas permeation through hybrid membranes may favour the Knudsen flow model or surface diffusion mechanism, depending on the TEOS/MTES ratio.


References

  1. T. Graham, Philos. Mag., 1866, 32, 401 Search PubMed.
  2. P. Meares, in Membranes in Gas Separation and Enrichment, ed. A. Williams, The Royal Society of Chemistry, London, 1986, pp. 1–25 Search PubMed.
  3. K. Keizer, R. J. R. Uhlhorn, R. J. Van Vuren and A. J. Burggraaf, J. Membr. Sci., 1988, 39, 285 CrossRef CAS.
  4. W. F. Maier, I. Tilgner, M. Wiedorn, H. Ko, A. Ziehfreund and R. Sell, Adv. Mater., 1993, 5, 730 CAS.
  5. A. Kaiser, H. Schmidt and H. Bottner, J. Membr. Sci., 1985, 22, 257 CrossRef CAS.
  6. (a) C. Guizard, N. Ajaka, M. P. Besland, A. Larbot and L. Cot, in Polyimides and Other High Temperature Polymers, ed. M. K. M. Abadie and B. Sillion, Elsevier Science, Amsterdam, 1991, p. 537 Search PubMed; (b) C. Guizard and P. Lacan, in Proceedings of First European Workshop on Hybrid Organic Inorganic Materials, Bierville, November 8–10, 1993, ed. C. Sanchez and F. Ribot, CNRS, Paris, 1993, p. 153 Search PubMed.
  7. S. Dirè, E. Pagani, F. Babonneau, R. Ceccato and G. Carturan, J. Mater. Chem., 1997, 7, 67 RSC.
  8. C. Della Volpe, S. Dirè and E. Pagani, J. Non-Cryst. Solids, 1997, 209, 51 CrossRef.
  9. L. C. Klein and N. Giszpenc, Ceram. Bull., 1990, 69, 1821 Search PubMed.
  10. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309 CrossRef CAS.
  11. J. F. Quinson, J. Dumas and J. Serughetti, J. Non-Cryst. Solids, 1986, 79, 397 CrossRef CAS.
  12. R. J. Good, J. Am. Chem. Soc., 1952, 74, 5041 CrossRef CAS.
  13. L. C. Klein, T. Bloxom and R. Woodman, Colloids Surf., 1992, 63, 173 CrossRef CAS.
  14. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic, Dordrecht, Netherlands, 1991, ch. 5 Search PubMed.
  15. B. C. Lippens and J. H. de Boer, J. Catal., 1965, 4, 319 CrossRef.
  16. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London, 1982, ch. 2 Search PubMed.
  17. K. G. Sharp, J. Sol-Gel Sci. Technol., 1994, 2, 35 Search PubMed.
  18. Y. Polevaya, J. Samuel, M. Ottolenghi and D. Avnir, J. Sol-Gel Sci. Technol., 1995, 5, 65 Search PubMed.
  19. D. Hua and D. M. Smith, Mater. Res. Soc. Symp. Proc., 1992, 271, 547 CAS.
  20. S. Wallace and L. L. Hench, J. Sol-Gel Sci. Technol., 1994, 1, 153 Search PubMed.
  21. T. Okui, Y. Saito, T. Okubo and M. Sadakata, J. Sol-Gel Sci. Technol., 1995, 5, 127 Search PubMed.
  22. W. R. Vieth and J. M. Howell, J. Membr. Sci., 1976, 1, 177 CrossRef CAS.
  23. H. Fujita, Fortschr. Hochpolym. Forsch., 1961, 3, 1 Search PubMed.
  24. E. R. Hensema, Adv. Mater., 1994, 6, 269 CrossRef CAS and references therein.
Click here to see how this site uses Cookies. View our privacy policy here.