Chemical hydrogen insertion into γ-manganese dioxide exhibiting low microtwinning

(Note: The full text of this document is currently only available in the PDF Version )

Lachlan A. H. MacLean and Frank L. Tye


Abstract

Hydrogen has been inserted by chemical methods into a syntheticγ-manganese dioxide characterized by 41% de Wolff disorder and a low amount of microtwinning. 23 Compounds covering the insertion range 0.00≤s≤0.82 where s is the value in MnO1.966Hswere prepared. Both XRD and FTIR evidence indicated homogeneous insertion in the range 0.00≤s≤0.34 followed by heterogeneous reaction in the range 0.34≤s≤0.82. Starting from the position that the structure of the predominant ramsdellite type lattice may be characterized by the distance z between the apical oxygens normal to the c axis of the manganese occupied octahedra and the angle β that the apical vector makes with the b axis a map was developed enabling the structure of the inserted compounds to be followed. In the homogeneous range, where H+ and e are mobile, insertion led to expansion of z with little change in β whereas in the heterogeneous range, where H+ is relatively immobile in the final product, a large change in β was observed which is believed to result from the location of H+ in the final product.


References

  1. J. P. Gabano, B. Morignat, E. Fialdes, B. Emery and J. F. Laurent, Z. Phys. Chem., 1965, 46, 359 CAS.
  2. J. Fitzpatrick and F. L. Tye, J. Appl. Electrochem., 1991, 21, 130 CAS.
  3. W. C. Maskell, J. E. A. Shaw and F. L. Tye, Electrochim. Acta, 1981, 26, 1403 CrossRef CAS.
  4. R. Giovanoli, K. Bernhard and W. Feitknecht, Helv. Chim. Acta, 1969, 52, 2333 CrossRef CAS.
  5. Y. Chabre and J. Pannetier, Prog. Solid State Chem., 1995, 23, 1 CrossRef CAS.
  6. F. L. Tye and S. W. Tye, J. Appl. Electrochem., 1995, 25, 425 CrossRef CAS.
  7. J. Fitzpatrick, L. A. H. MacLean, D. A. J. Swinkels and F. L. Tye, J. Appl. Electrochem., 1997, 27, 243 CrossRef CAS.
  8. L. A. H. MacLean and F. L. Tye, J. Solid State Chem., 1996, 123, 150 CrossRef CAS.
  9. E. Preisler, J. Appl. Electrochem., 1989, 19, 540 CrossRef CAS.
  10. P. Strobel, J.-C. Joubert and M.-J. Rodriguez, J. Mater. Sci., 1986, 21, 583 CAS.
  11. K. J. Vetter and N. Yeager, Electrochim. Acta, 1966, 11, 401 CrossRef CAS.
  12. P. M. de Wolff, Acta Crystallogr., 1959, 12, 341 CrossRef CAS.
  13. C. Chatfield, Statistics for Technology, Chapman and Hall, London, 3rd edn., 1985, p. 306 Search PubMed.
  14. The Chemistry of the Transition Elements, ed. A. Earnshaw and T. J. Harrington, Clarendon Press, Oxford, 1973, p. 24 Search PubMed.
  15. T. Ohzuku, J. Kato, K. Sawai and T. Hirai, J. Electrochem. Soc., 1991, 138, 2557.
  16. W. H. Baur, Acta Crystallogr., Sect. B, 1976, 32, 2200 CrossRef.
  17. J. F. Post and R. D. Ross, Eos (Madrid), 1989, 70, 352 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.