Cation disorder in ferroelectric Aurivillius phases of the type Bi2ANb2O9(A=Ba, Sr, Ca)

(Note: The full text of this document is currently only available in the PDF Version )

Susan M. Blake, Mark J. Falconer, Mark McCreedy and Philip Lightfoot


Abstract

The structures of the ferroelectric two-layer Aurivillius phases Bi2ANb2O9 (A=Ba, Sr, Ca) have been refined using a combination of X-ray and neutron powder diffraction data. Bi2BaNb2O9 is not significantly distorted from idealised symmetry and has been refined in tetragonal space group I4/mmm, a=3.9362(1) and c=25.6582(7) Å. The Sr and Ca compounds have been refined in orthorhombic space group A21am, with a=5.5193(3), b=5.5148(3), c=25.0857(6) Å and a=5.4833(1), b=5.4423(1), c=24.8984(6) Å, respectively. The orthorhombic distortion increases with decreasing A2+ cation size and originates from bonding requirements at the perovskite A site, in agreement with previous work. However, in contrast to earlier work, we find a partial mixing of Bi and A cations on their respective sites, which increases in the order Ca<Sr<Ba. This effect is also discussed in terms of bonding requirements at the metal sites and bond valence sum analysis. The combined use of X-ray and neutron powder diffraction data is found to be essential in determining this subtle effect, which may have important consequences in the interpretation of the ferroelectric behaviour of this family of materials.


References

  1. B. Aurivillius, Arki. Kemi., 1949, 1, 463 Search PubMed.
  2. G. A. Smolenski, V. A. Isupov and Agranovskaya, Sov. Phys. Solid State (Engl. Transl.), 1959, 3, 651 Search PubMed.
  3. E. C. Subbarao, J. Phys. Chem. Solids, 1962, 23, 665 CrossRef CAS.
  4. A. D. Rae, J. G. Thompson, R. L. Withers and A. C. Willis, Acta Crystallogr., Sect. B, 1991, 47, 174 CrossRef.
  5. J. G. Thompson, A. D. Rae, R. L. Withers and D. C. Craig, Acta Crystallogr., Sect. B, 1990, 46, 474 CrossRef.
  6. A. D. Rae, J. G. Thompson and R. L. Withers, Acta Crystallogr., Sect. B, 1992, 48, 418 CrossRef.
  7. C. A.-Paz de Araujo, J. D. Cuchlaro, L. D. McMillan, M. C. Scott and J. F. Scott, Nature (London), 1995, 374, 627 CrossRef.
  8. R. L. Withers, J. G. Thompson and A. D. Rae, J. Solid State Chem., 1991, 94, 404 CrossRef CAS.
  9. Ismunandar, B. J. Kennedy, Gunawan and Marsongkohadi, J. Solid State Chem., 1996, 126, 135 CrossRef.
  10. V. Srikanth, H. Idink, W. B. White, E. C. Subbarao, H. Rajagopal and A. Sequeira, Acta Crystallogr., Sect. B, 1996, 52, 432 CrossRef.
  11. P. Millan, A. Castro and J. B. Torrance, Mater. Res. Bull., 1993, 28, 117 CrossRef CAS.
  12. J. D. Jorgensen, J. Faber Jr., J. M. Carpenter, R. K. Crawford, J. R. Haumann, R. L. Hitterman, R. Kleb, G. E. Ostrowski, F. J. Rotella and T. J. Worlton, J. Appl. Crystallogr., 1989, 22, 321 CrossRef CAS.
  13. A. C. Larson and R. B. von Dreele, Los Alamos National Laboratory Report No. LA-UR-86-748, 1987.
  14. I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B, 1985, 41, 244 CrossRef.
  15. The United Kingdom Chemical Database Service, D. A. Fletcher, R. F. McMeeking and D. Parkin, J. Chem. Inf. Comput. Sci., 1996, 36, 746 Search PubMed.