Solid-state NMR study of locations and dynamics of interlayer cationsand water in kanemite

(Note: The full text of this document is currently only available in the PDF Version )

Shigenobu Hayashi


Abstract

The locations and dynamics of interlayer sodium (Na) cations and water in kanemite have been studied by means of solid-state1H, 29Si and 23Na NMR. In addition to one-dimensional (1D) spectra, 1H–29Si two-dimensional (2D) cross-polarization (CP) correlation, 23Na 2D nutation and 23Na 2D triple-quantum spectra were also measured. Hydroxy groups have a large 1H chemical shift (15 ppm from tetramethylsilane), forming strong hydrogen bonds of the Si–O–HO- –Si type between the layers. When the amount of water is large, the water molecules are mobile in the interlayer space. With a decrease in the water content, the motion of the water is restricted. There is only one type of Si site in undried kanemite. The decrease in the water content affects the layer structure, which is indicated by a new 29Si peak. The site of Na+ species has an isotropic chemical shift of 2.9 ppm from 1 mol dm-3 NaCl aqueous solution, a quadrupole coupling constant of 2.05 MHz and an asymmetry factor of 0.63. The Na+ species do not rotate isotropically, but have a fixed orientation. Water molecules do not coordinate to the Na ions directly.


References

  1. K. Beneke and G. Lagaly, Am. Mineral., 1977, 62, 763 CAS.
  2. M. T. Le Bihan, A. Kalt and R. Wey, Bull. Soc. Fr. Miner. Cristallogr., Sect. B, 1968, 24, 13 Search PubMed.
  3. T. Yanagisawa, T. Shimizu, K. Kuroda and C. Kato, Bull. Chem. Soc. Jpn., 1990, 63, 988 CrossRef CAS.
  4. S. Inagaki, Y. Fukushima and K. Kuroda, J. Chem. Soc., Chem. Commun., 1993, 680 RSC.
  5. M. T. Le Bihan, A. Kalt and R. Wey, Bull. Soc. Fr. Miner. Cristallogr., 1971, 94, 15 Search PubMed.
  6. T. J. Pinnavaia, I. D. Johnson and M. Lipsicas, J. Solid State Chem., 1986, 63, 118 CrossRef CAS.
  7. J. M. Rajo, E. Ruiz-Hitzky and J. Sanz, Inorg. Chem., 1988, 27, 2785 CrossRef CAS.
  8. Z. Q. Deng, J. F. Lambert and J. J. Fripiat, Chem. Mater., 1989, 1, 375 CrossRef CAS.
  9. G. G. Almond, R. K. Harris and P. Graham, J. Chem. Soc., Chem. Commun., 1994, 851 RSC.
  10. D. C. Apperley, M. J. Hudson, M. T. J. Keene and J. A. Knowles, J. Mater. Chem., 1995, 5, 577 RSC.
  11. G. G. Almond, R. K. Harris and K. R. Franklin, Solid State Nucl. Magn. Reson., 1996, 6, 31 CrossRef CAS.
  12. G. G. Almond, R. K. Harris, K. R. Franklin and P. Graham, J. Mater. Chem., 1996, 6, 843 RSC.
  13. A. J. Vega, J. Am. Chem. Soc., 1988, 110, 1049 CrossRef CAS.
  14. D. Massiot, B. Touzo, D. Trumeau, J. P. Coutures, J. Virlet, P. Florian and P. J. Grandinetti, Solid State Nuc. Magn. Reson., 1996, 6, 73 Search PubMed.
  15. J. M. Thomas, J. Klinowski, S. Ramdas, B. K. Hunter and D. T. B. Tennakoon, Chem. Phys. Lett., 1983, 102, 158 CrossRef CAS.
  16. S. Ramdas and J. Klinowski, Nature (London), 1984, 308, 521 CrossRef CAS.
  17. G. E. Maciel and D. W. Sindorf, J. Am. Chem. Soc., 1980, 102, 7607 CrossRef.
  18. R. K. Harris and G. J. Nesbitt, J. Magn. Reson., 1988, 78, 245 CAS.
  19. S. Hayashi, K. Hayamizu and O. Yamamoto, Bull. Chem. Soc. Jpn., 1987, 60, 105 CAS.
  20. M. Soma, A. Tanaka, H. Seyama, S. Hayashi and K. Hayamizu, Clay Sci., 1990, 8, 1 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.