Spirooxazine- and spiropyran-doped hybrid organic–inorganic matrices with very fast photochromic responses

(Note: The full text of this document is currently only available in the PDF Version )

Barbara Schaudel, Céline Guermeur, Clément Sanchez, Keitaro Nakatani and Jacques A. Delaire


Abstract

Both spirooxazine and spiropyran dyes have been embedded into two different hybrid matrices, which were formed from hydrolysis and cocondensation between diethoxydimethylsilane and zirconium propoxide and between methyldiethoxysilane (DH) and triethoxysilane (TH) respectively. The nature and the kinetics of the photochromic response depend strongly on the hydrophobic/hydrophilic balance (HHB) of the hybrid material. The HHB controls the competition between direct and reverse photochromism. The photochromic behaviour of the strongly hydrophobic spirooxazine-doped DH/TH coatings is direct, highly efficient (ΔA>1), reversible and extremely fast (thermal bleaching time constant, k=0.2 s-1 ). The photochromic kinetics of this hybrid material are, to the best of our knowledge, much faster than those reported for spirooxazine in any other solid matrix.


References

  1. H. Schmidt and B. Seiferling, Mater. Res. Soc. Symp. Proc., 1986, 73, 739 CAS.
  2. C. J. Brinker and G. Scherrer, Sol–Gel Science, the Physics and Chemistry of Sol–Gel Processing, Academic Press, San Diego, 1989 Search PubMed.
  3. B. M. Novak, Adv. Mater., 1993, 5, 422 CrossRef CAS.
  4. C. Sanchez and F. Ribot, New J. Chem., 1994, 18, 1007 Search PubMed.
  5. Sol–Gel Optics, Processing and Applications, ed. L. C. Klein, Kluwer Academic, Boston, 1993 Search PubMed.
  6. Sol–Gel Optics I, ed. J. D. Mackenzie and D. R. Ulrich, Proc. SPIE, vol. 1328, Washington, DC, 1990 Search PubMed.
  7. Sol–Gel Optics II, ed. J. D. Mackenzie, Proc. SPIE, vol. 1758, Washington, DC, 1992 Search PubMed.
  8. Sol–Gel Optics III, ed. J. D. Mackenzie, Proc. SPIE, vol. 2288, Washington, DC, 1994 Search PubMed.
  9. B. Dunn and J. I. Zink, J. Mater. Chem., 1991, 1, 903 RSC.
  10. D. Levy and D. Avnir, J. Phys. Chem., 1988, 92, 734.
  11. D. Levy, S. Einhorn and D. Avnir, J. Non-Cryst. Solids, 1989, 113, 137 CrossRef CAS.
  12. D. Preston, J. C. Pouxviel, T. Novinson, W. C. Kaska, B. Dunn and J. I. Zink, J. Phys. Chem., 1990, 94, 4167 CrossRef CAS.
  13. H. Nakazumi, R. Nagashiro, S. Matsumoto and K. Isagawa, SPIE Proc. Vol 2288, Sol–Gel Optics III, Proc. SPIE, vol. 2288, San Diego, 1994 Search PubMed.
  14. L. Hou, B. Hoffmann, M. Menning and H. Schmidt, J. Sol–Gel Sci. Technol., 1994, 2, 635 Search PubMed.
  15. L. Hou, M. Menning and H. Schmidt, J. Sol–Gel Sci. Technol., 1996, in press Search PubMed.
  16. L. Hou, M. Menning and H. Schmidt, Proc Eurogel'92, 1992, 173 Search PubMed.
  17. J. Biteau, F. Chaput and J. P. Boilot, J. Phys. Chem., 1996, 100, 9024 CrossRef CAS.
  18. S. Diré, F. Babonneau, C. Sanchez and J. Livage, J. Mater. Chem., 1992, 2, 239 RSC.
  19. S. Diré, F. Babonneau, G. Carturan and J. Livage, J. Non-Cryst. Solids, 1992, 147 & 148, 62 CAS.
  20. C. Guermeur and C. Sanchez, to be published.
  21. T. J. Bastow, M. E. Smith and H. J. Whitfield, J. Mater. Chem., 1992, 2, 989 RSC.
  22. F. Babonneau, J. Maquet and J. Livage, Ceram. Trans., 1995, 55, 53 Search PubMed.
  23. G. D. Soraru, G. D'Andrea, R. Campostrini and F. Babonneau, J. Mater. Chem., 1995, 5, 1363 RSC.
  24. F. Babonneau, L. Bois, J. Livage and S. Diré, Mater. Res. Soc. Symp. Proc., 1993, 286, 289 CAS.
  25. Y. Atassi, Thesis, Ecole Nationale Supérieure de Cachan France, 1996.
  26. J. B. Flannery, J. Chem. Soc. A, 1968, 5660 Search PubMed.
  27. Applied photochromic polymer systems, ed. C. B. McArdle, New York, 1991 Search PubMed.
  28. A. P. Altshuller and L. Rosenblum, J. Am. Chem. Soc., 1955, 77, 272 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.