Preparation and characterization of amorphous nanometre sized Fe3O4powder

(Note: The full text of this document is currently only available in the PDF Version )

X. Cao, Yu. Koltypin, G. Katabi, R. Prozorov, I. Felner and A. Gedanken


Abstract

A method for the preparation of amorphous Fe3O4 powder with a particle size of ca. 25 nm is reported. Amorphous Fe3O4 powder can be simply synthesized by slowly exposing amorphous Fe powder to the air. The amorphous properties of Fe3O4 nanoparticles were characterized by X-ray diffraction, Mössbauer spectroscopy, transmission electron micrography, differential scanning calorimetry and quantum design SQUID magnetization measurements. This amorphous Fe3O4 powder is superparamagnetic and its magnetization at room temperature is very low (<1.5 emu g-1); it crystallizes at 285±15 °C.


References

  1. J. Livage, J. Phys., Colloq., 1981, 42, 981 Search PubMed.
  2. Ferromagnetic Materials, ed. E. P. Wohlfarth, North-Holland, Amsterdam, New York, Oxford, Tokyo, 1980, vol. 2, p. 405 Search PubMed.
  3. L. Murawski, C. H. Chung and J. D. Mackenzie, J. Non-Cryst. Solids, 1979, 32, 91 CrossRef CAS.
  4. H. E. Curry-Hyde, H. Musch and A. Baiker, Appl. Catal., 1990, 65, 211 CrossRef CAS.
  5. H. Cao and S. L. Suib, J. Am. Chem. Soc., 1994, 116, 5334 CrossRef CAS.
  6. M. Sugimoto, J. Magn. Magn. Mater., 1994, 133, 460 CrossRef CAS.
  7. K. Tanaka, K. Hirao and N. Soga, J. Appl. Phys., 1991, 69, 7752 CrossRef CAS.
  8. M. Sugimoto and N. Hiratsuka, J. Magn. Magn. Mater., 1983, 31/34, 1533 CrossRef.
  9. W. E. Steger, H. Landmesser, U. Boettcher and E. Schubert, J. Mol. Struct., 1990, 217, 341 CrossRef CAS.
  10. B. Pashmakov, B. Claflin and H. Fritzsche, Solid State Commun., 1993, 86, 619 CrossRef CAS.
  11. A. M. Van Diepen and Th. J. A. Popma, J. Phys., 1976, 37, C6 Search PubMed; Solid State Commun., 1978, 27, 121 Search PubMed.
  12. K. Kandori and T. Ishikawa, Langmuir, 1991, 7, 2213 CrossRef CAS.
  13. K. S. Suslick, S. B. Choe, A. A. Cichowlas and M. W. Grinstaff, Nature (London), 1991, 353, 414 CrossRef CAS.
  14. K. S. Suslick, M. Fang, T. Hyeon and A. A. Cichowlas, Molecularly Designed Ultrafine Nanostructured Materials, ed. K. E. Gonsalves, G. M. Chow, T. D. Xiao and R. C. Cammarata, Mater. Res. Soc. Symp. Proc., Pittsburgh, PA, 1994, vol. 351 Search PubMed.
  15. K. S. Suslick, T. Hyeon, M. Fang and A. A. Cichowlas, Mater. Res. Soc. Symp. Proc., Pittsburgh, PA, 1994, vol. 351 Search PubMed.
  16. M. W. Grinstaff, M. B. Salamon and K. S. Suslick, Phys. Res. Rev. B, 1993, 48, 269 Search PubMed.
  17. X. Cao, Yu. Koltypin, G. Katabi, R. Prozorov and A. Gedanken, J. Mater. Res., 1995, 10, 2952 CAS.
  18. Yu. Koltypin, X. Cao, G. Katabi, R. Prozorov and A. Gedanken, J. Non-Cryst. Solids, 1996, 201, 159 CrossRef CAS.
  19. Wuhan University, Analytical Chemistry (in Chinese), People's Educational Publishing House, Beijing, 1979, pp. 294, 303 Search PubMed.
  20. D. Segal, Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press, New York, 1989, p. 150 Search PubMed.
  21. N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy, Chapman and Hall, London, 1971, p. 251 Search PubMed.
  22. S. R. Elliott, Physics of Amorphous Materials, Longman, London and New York, 1984, p. 350 Search PubMed.
  23. S. Morup, Europhys. Lett., 1994, 28, 671 Search PubMed; S. Morup and E. Tronc, Phys. Rev. Lett., 1994, 72, 3278 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.