A method for the preparation of high purity lead titanate zirconate solid solutions by carbonate–gel composite powder precipitation

(Note: The full text of this document is currently only available in the PDF Version )

T. R. Narayanan Kutty and P. Padmini


Abstract

A novel wet chemical route for the preparation of perovskite titanates (ABO3 type, where A is a divalent cation and B is a tetravalent cation) such as PbTiO3 and its solid solutions, is described. The method involves the coprecipitation of the divalent cations (A) as fine particles of carbonates with hydrated gels of titania or zirconia (BO2 xH2O, 12<x<130; B=Ti4+ , Zr4+) by the addition of ammonium carbonate. Such coprecipitation is possible because of the instability of the carbonates and oxycarbonates of Ti and Zr in aqueous media in comparison to the polymerised hydroxides, whereas lead carbonate is precipitated readily. The method gives rise to composite powders in which the submicron crystalline particles of the carbonates, crystalline to X-ray diffraction, are embedded within amorphous gels of BO2 xH2O. The composite nature of the precipitate is confirmed by transmission electron microscopy. The precipitate is dried and calcined at elevated temperatures. Upon heating to 350–400 °C, the reaction between the carbonate and the amorphous dry gel proceeds via the formation of the intermediate PbOzTiO2 (z<0.09) solid solution which then converts to a defect pyrochlore phase (A2B2O7-δ, δ=1). Above 450 °C, the latter converts to an isocompositional perovskite phase. The process is superior to ceramic methods because of the high purity, uniform chemical homogeneity and lower particle size of the final product.


References

  1. A. J. Moulson and J. M. Herbert, Electroceramics, Chapman and Hall, London, 1990 Search PubMed.
  2. P. P. Phule and S. H. Risbud, J. Mater. Sci., 1990, 25, 1169 CAS.
  3. Better Ceramics Through Chemistry, ed. C. J. Brinker, D. E. Clark and D. A. Ulrich, Mater. Res. Soc. Symp. Proc., North-Holland, Amsterdam, 1984, vol. 32 Search PubMed.
  4. L. M. Brown and K. S. Mazdiyasni, J. Am. Ceram. Soc., 1972, 55, 541 CAS.
  5. S. Kaneko and F. Imoto, Bull. Chem. Soc. Jpn., 1978, 51, 1739 CAS.
  6. A. N. Christensen and S. E. Ramussen, Acta Chem. Scand., 1963, 17, 845 CAS.
  7. R. Balachandran and T. R. N. Kutty, Mater. Res. Bull., 1984, 19, 1479 CrossRef.
  8. H. S. Gopalakrishnamurthy, M. Subbarao and T. R. N. Kutty, J. Inorg. Nucl. Chem., 1976, 38, 417 CrossRef.
  9. K. Aykan, J. Am. Ceram. Soc., 1968, 51, 577 CAS.
  10. J. Thomson, Jr., Bull. Am. Ceram. Soc., 1974, 53, 421.
  11. S. S. Chandratreya, R. M. Fulrath and J. A. Pask, J. Am. Ceram. Soc., 1981, 64, 422 CAS.
  12. T. R. N. Kutty, R. Vivekanandan and P. Murugaraj, Mater. Chem. Phys., 1988, 19, 533 CrossRef CAS.
  13. B. Jaffe, W. R. Cook and J. Jaffe, Piezoelectric Ceramics, Academic Press, London, 1971 Search PubMed.
  14. Y. Matsuo and H. Sasaki, J. Am. Ceram. Soc., 1963, 46, 409 CAS.
  15. K. Takai, S. Shoji, H. Naito and A. Sawaoka, Proc. 1st Int. Symp. Hydrothermal Reactions, ed. Somiya, Association for Scientific Document Information Publications, Tokyo, 1983, p. 877 Search PubMed.
  16. JCPDS Powder Diffraction File, Inorganic Volume, card no. 26–142.
  17. F. W. Martin, Phys. Chem. Glasses, 1965, 6, 143 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.