Hydrothermal treatment and strontium ion sorption properties of fibrous cerium(IV) hydrogenphosphate

(Note: The full text of this document is currently only available in the PDF Version )

Hiromichi Hayashi, Kazuo Torii and Shin-ichi Nakata


Abstract

Fibrous cerium hydrogenphosphate, CeP, has been treated hydrothermally in 1 mol dm-3 phosphoric acid solution. CEP and its hydrothermally treated product, CeP(HT), have been characterized by X-ray powder diffractometry, scanning electron microscopy, solid-state 31P MAS NMR spectroscopy, FTIR spectroscopy, chemical and thermal analyses. A poorly crystalline fibrous CeP with a d-spacing of 1.1 nm converted into a highly crystalline CeP(HT) with platelet morphology by hydrothermal treatment. Solid-state 31P MAS NMR and FTIR measurements confirmed that one kind of phosphate (H2PO4) is present in CeP and two kinds of phosphate (HPO4 , PO4) are present in CeP(HT), in which the integrated intensity ratio of HPO4 to PO4 is 2:1. From chemical and thermal analyses, structural formulae for CeP and CeP(HT) are assumed to be CeO(H2PO4)2 2H2O and Ce(HPO4) (PO4)0.5(OH)0.5 , respectively. The Na+ exchange capacity of CeP amounted to 4.5 mmol g-1 at pH 11 while that of CeP(HT) was less than 1.0 mmol g-1 in the pH range 2–12. The pH dependence of the metal ion distribution coefficients exhibited ideal ion-exchange behaviour on CeP while metal ion distribution coefficients on CeP(HT) scarcely depended on pH. The metal ion selectivities of CeP and CeP(HT) increased in the order: Na+<Ca2+<Sr2+ <K+ , and Na+<K+<Ca2+ <Sr2+ , respectively. The distribution coefficient for the Sr2+ ion of CeP(HT) was higher than that of CeP under hydrothermal conditions.


References

  1. G. A. Alberti, M. A. Massucci and E. Torracca, J. Chromatogr., 1967, 30, 579 CrossRef CAS.
  2. G. A. Alberti, M. Casciola, U. Costantino and M. L. Luciani, J. Chromatogr., 1976, 128, 289 CrossRef CAS.
  3. G. A. Alberti, U. Costantino, F. Di Gregorio, P. Galli and E. Torracca, J. Inorg. Nucl. Chem, 1968, 30, 295 CrossRef CAS.
  4. G. A. Alberti, U. Costantino and L. Zsinka, J. Inorg. Nucl. Chem., 1972, 34, 3549 CrossRef CAS.
  5. K. H. Konig and E. Meyn, J. Inorg. Nucl. Chem., 1967, 29, 1153 CrossRef.
  6. E. M. Larsen and W. A. Cilley, J. Inorg. Nucl. Chem., 1968, 30, 287 CrossRef CAS.
  7. R. G. Herman and A. Clearfield, J. Inorg. Nucl. Chem., 1975, 37, 1697 CrossRef CAS.
  8. T. Sasaki, Y. Komatsu and Y. Fujiki, Chem. Lett., 1981, 957 CAS.
  9. N. Yamasaki, K. Yanagisawa, S. Kanahara, M. Nishioka, K. Matsuoka and J. Yamazaki, J. Nucl. Sci. Technol., 1984, 21, 71 Search PubMed.
  10. D. K. Bhattacharyya and N. C. Dutta, J. Mater. Sci., 1995, 30, 2248 CrossRef CAS.
  11. S. Ahrland and G. Carleson, J. Inorg. Nucl. Chem., 1977, 33, 2229 CrossRef.
  12. A. Clearfield and G. D. Smith, Inorg. Chem., 1969, 8, 431 CrossRef CAS.
  13. N. J. Clayden, J. Chem. Soc., Dalton Trans., 1987, 1877 RSC.
  14. A. N. Christensen, E. K. Andersen, I. G. K. Andersen, G. Alberti, M. Nielsen and M. S. Lehmann, Acta Chem. Scand., 1990, 44, 865 CAS.
  15. N. J. Clayden, Solid State Ionics, 1987, 24, 117 CrossRef CAS.
  16. K. Nakashiro, Y. Ono, S. Nakata and Y. Morimura, Zeolites, 1993, 561 CrossRef CAS.
  17. L. Maistriau, Z. Gabelica, E. G. Derouane, E. T. C. Vogt and J. van Oene, Zeolites, 1991, 583 CAS.
  18. K. Segawa, S. Nakata and S. Asaoka, Mater. Chem. Phys., 1987, 17, 181 CrossRef CAS.
  19. H. Hayashi, T. Iwasaki, T. Nagase, Y. Onodera and K. Torii, Solvent Extr. Ion Exch., 1995, 13, 1145 Search PubMed.
  20. F. H. Sweeton, R. E. Mesmer and C. F. Baes, Jr, J. Solution Chem., 1974, 3, 191 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.