Atomistic simulation of the surface structure of the TiO2 polymorphs rutileand anatase

(Note: The full text of this document is currently only available in the PDF Version )

Peter M. Oliver, Graeme W. Watson, E. Toby Kelsey and Stephen C. Parker


Abstract

Atomistic simulation has been used to calculate the surface structures and stability of the rutile and anatase polymorphs of TiO2 . The surface and attachment energies were used to evaluate the equilibrium and pseudo-kinetic morphologies. The surfaces expressed in rutile were {011}, {110}, {100} and {221} with surface energies of 1.85, 1.78, 2.08 and 2.02 J m-2 respectively. For anatase the {011} and {001} surfaces were dominant in the morphology with relaxed surface energies of 1.40 and 1.28 J m-2 . The predicted equilibrium forms were largely in good agreement with the reported experimental morphologies of rutile and anatase and showed the importance of surface relaxation.


References

  1. A. Fujishima and K. Honda, Nature (London), 1972, 238, 37 CAS.
  2. Y. W. Chung, W. J. Lo and G. A. Somorjai, Surf. Sci., 1977, 64, 588 CrossRef CAS.
  3. C. A. Muryn, P. J. Hardman, J. J. Crouch, G. N. Raiker, G. Thornton and D. S. L. Law, Surf. Sci., 1991, 251/252, 747 CrossRef.
  4. P. Zschack, J. B. Cohen and Y. W. Chung, Surf. Sci., 1992, 262, 395 CrossRef CAS.
  5. P. W. Murray, F. M. Leibsle, H. J. Fisher, C. F. Flipse, C. A. Muryn and G. Thornton, Phys. Rev. B, 1992, 46, 12877 CrossRef CAS.
  6. R. V. Kasowski and R. H. Tait, Phys. Rev. B, 1992, 20, 5168 CrossRef.
  7. M. Tsukada, C. Satoko and H. Adachi, J. Phys. Soc. Jpn., 1979, 47, 1610 Search PubMed.
  8. M. Ramamoorthy, R. D. King-Smith and D. Vanderbilt, Phys. Rev. B, 1994, 49, 7709 CrossRef CAS.
  9. M. Ramamoorthy, D. Vanderbilt and R. D. King-Smith, Phys. Rev. B, 1994, 49, 16723.
  10. S. Munnix and M. Schmeits, Phys. Rev. B, 1984, 30, 2202 CrossRef CAS.
  11. P. M. Oliver, S. C. Parker, J. Purton and D. W. Bullett, Surf. Sci., 1994, 307–309, 1200 CrossRef CAS.
  12. A. Cordoba and J. J. Luque, Phys. Rev. B, 1985, 31, 8111 CrossRef CAS.
  13. S. Morad, Sedimentary Geology, 1986, 46, 77 Search PubMed.
  14. W. E. Ford and E. S. Dana, A Textbook of Mineralogy, Wiley, Chichester, 1958, 4th edn Search PubMed.
  15. I. Kostov, Mineralogy, Nauka i Izkustvo, Sofia, 1968 Search PubMed.
  16. G. Munuera, F. Moreno and F. Gonzalez, Reactivity of Solids, ed. J. S. Anderson, M. W. Roberts and F. S. Stone, Chapman and Hall, London, 1972 Search PubMed.
  17. G. W. Watson, E. T. Kelsey, N. H. de Leeuw, D. J. Harris and S. C. Parker, J. Chem. Soc., Faraday Trans., 1996, 92, 433 RSC.
  18. M. Matsui and M. Akoagi, Molecular Simulation, 1991, 6, 239 Search PubMed.
  19. D. E. Parry, Surf. Sci., 1975, 49, 433 CrossRef CAS.
  20. D. E. Parry, Surf. Sci., 1976, 54, 195 CrossRef.
  21. P. P. Ewald, Ann. Phys., 1921, 64, 253.
  22. P. W. Tasker, J. Phys. C: Solid State Phys., 1979, 12, 4977 CrossRef CAS.
  23. F. Bertaut, Compt. Rend., 1958, 246, 3447 Search PubMed.
  24. P. M. Oliver, S. C. Parker and W. C. Mackrodt, Modelling Simul. Mater. Sci. Eng., 1993, 1, 755 CrossRef CAS.
  25. G. Wulff, Z. Kristallogr. Kristallgeom., 1901, 39, 449 Search PubMed.
  26. J. W. Gibbs, Collected Works, Longman, New York, 1928 Search PubMed.
  27. H. Hilton, Mathematical Crystallography, Oxford, 1903 Search PubMed.
  28. H. Leibman, Z. Kristallogr., 1914, 53, 171.
  29. M. von Laue, Z. Kristallogr., 1943, 105, 124 CAS.
  30. I. N. Stranski, Z. Phys. Chem. B, 1938, 38, 451 Search PubMed.
  31. M. Volmer, Kinetik der Phasenbildung, Steinkopff, Leipzig, 1939 Search PubMed.
  32. J. D. Donnay and G. Harker, Am. Mineral., 1937, 22, 446 CAS.
  33. P. Hartman and F. Bennema, J. Crystal Growth, 1980, 49, 145 Search PubMed.
  34. C. F. Woensdregt, Faraday Discuss., 1993, 95, 97 RSC.
  35. W. A. Deer, R. A. Howie and J. Zussman, Rock Forming Minerals, Longmans, London, 1962, 1st edn., vol. 5 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.