Radiation chemistry and the lithographic performance of chemical amplification resists formulated from poly(4-epoxystyrene-stat-styrene) and a photoacid generator

(Note: The full text of this document is currently only available in the PDF Version )

Richard G. Jones,, Gerard P-G. Cordina and Julian J. Murphy


Abstract

Copolymers of styrene and 4-epoxystyrene in formulations with triphenylsulfonium hexafluoroantimonate as a photoacid generator undergo a crosslinking reaction by a chain mechanism when irradiated with 20 keV electrons and hence act as negative-working electron-beam resists. The copolymers have been prepared by a free radical mechanism over the entire composition range and the lithographic performance of the materials has been evaluated. The sensitivities of the resist formulations are shown to correlate with the epoxystyrene content of the copolymers in accordance with a simple model of the radiation chemistry of the system. Contrast variations are explained in terms of the statistical structure of the copolymer and it is demonstrated that at low epoxystyrene contents the systems behave in accordance with an unsensitised single-stage crosslinking mechanism. The copolymers with epoxystyrene contents greater thanca. 8% have such high lithographic sensitivities and show such a good tolerance of processing variations as to commend the optimisation of their performance with a view to their subsequent application as electron-beam resists.


References

  1. F. M. Houlihan, E. Reichmanis, L. F. Thompson and R. G. Tarascon, in Polymers in Microlithography, ed. E. Reichmanis, S. A. MacDonald and T. Iwayanagi, ACS Symp. Ser., Am. Chem. Soc., 1989, 39, 412 Search PubMed.
  2. S. A. MacDonald, N. J. Clecak, H. R. Wendt, C. G. Wilson, C. D. Snyder, C. J. Knors, N. B. Deyoe, J. G. Mathews, J. R. Morrow, H. E. McQuire and S. J. Holmes, Proc. SPIE, 1991, 2, 1446 Search PubMed.
  3. T. Hirai, Y. Hatano and S. Nonogaki, J. Electrochem. Soc., 1971, 118, 669 CAS.
  4. Y. Taniguchi, Y. Hatano, H. Shiraishi, S. Horigome, S. Nonagaki and K. Noraoka, Jpn. J. Appl. Phys., 1979, 18, 1143 CAS.
  5. L. F. Thompson, J. P. Ballantyne and E. D. Feit, J. Vac. Sci. Technol., 1975, 12, 1280 Search PubMed.
  6. S. Imamura, J. Electrochem. Soc., 1979, 126, 1628 CAS.
  7. R. G. Tarascon, M. A. Hartney and M. J. Bowden, in Materials for Microlithography, ed. L. F. Thompson, C. G. Wilson and J. M. J. Fréchet, ACS Symp. Ser. 266, Am. Chem. Soc., Washington, DC, 1984 Search PubMed.
  8. M. A. Hartney, R. G. Tarascon and A. E. Novembre, J. Vac. Sci. Technol. B, 1985, 3, 360 CrossRef CAS.
  9. R. G. Jones, Y. Matsubayashi, P. Miller Tate and D. R. Brambley, J. Electrochem. Soc., 1990, 137, 2820 CAS.
  10. K. J. Stewart, M. Hatzakis, J. M. Shaw and D. E. Seeger, J. Vac. Sci. Technol. B., 1989, 7, 1734 CrossRef CAS.
  11. M. Hatzakis, K. J. Stewart, J. M. Shaw and S. A. Rishton, J. Electrochem. Soc., 1991, 138, 1076 CAS.
  12. P. Argitis, I. Raptis, C. J. Aidinis, N. Glezos, M. Baciocchi, J. Everett and M. Hatzakis, J. Vac. Sci. Technol. B., 1995, 13, 3030 CrossRef CAS.
  13. R. Truxa and M. Suchopárek, Makromol. Chemie, 1990, 191, 1931 Search PubMed.
  14. R. G. Jones, P. C. Miller Tate and D. R. Brambley, J. Mater. Chem., 1991, 1, 401 RSC.
  15. A. Novembre and T. N. Bowmer, in Materials for Microlithography, ed. L. F. Thompson, C. G. Wilson and J. M. J. Fréchet, ACS Symp. Ser. 266, Am. Chem. Soc., Washington, DC, 1984 Search PubMed.
  16. P. C. Miller Tate, R. G. Jones, J. Murphy and J. Everett, Microelectronic Eng., 1995, 27, 409 Search PubMed.
  17. Ll. G. Griffiths, R. G. Jones and D. R. Brambley, Polym. Commun., 1988, 29, 173 Search PubMed.
  18. D. R. Brambley, R. G. Jones, Y. Matsubayashi and P. Miller Tate, J. Vac. Sci. Technol. B, 1990, 8, 1412 CrossRef CAS.
  19. A. Charlesby, Atomic Radiation and Polymers, Pergamon Press, Oxford, 1960 Search PubMed.
  20. Y. I. Estrin and S. G. Entelis, Polym. Sci. USSR, 1968, 10, 3006 Search PubMed; 1969, 11, 1286.
Click here to see how this site uses Cookies. View our privacy policy here.