Deposition of LaNiO3 thin films in an atomic layer epitaxy reactor

(Note: The full text of this document is currently only available in the PDF Version )

Helene Seim, Heini Mölsä, Minna Nieminen, Helmer Fjellvåg and Lauri Niinistö


Abstract

LaNiO3 thin films have been deposited in an atomic layer epitaxy (ALE) reactor, using La(thd)3 , Ni(thd)2 and ozone as reactants, thereby proving the feasibility of the ALE technique to produce films of ternary oxides. Depositions were made on Corning glass in the temperature range 150–450 °C. The growth conditions were studied and the growth rate showed a linear dependence on the number of cycles. At 400 °C the growth rate was 0.24–0.26 Å per cycle. The growth rate of the LaNiO3 thin films was greatly influenced by the deposition temperature but in the temperature range 215–250 °C the growth saturated at 0.08 Å cycle-1 independent of the deposition temperature, thus indicating an ALE window. As-deposited thin films were amorphous but crystallized when heated at 600 °C. Simultaneously the colour of the films changed from yellow–brown to black. Possible reasons for the colour changes are discussed. Resistivity measurements showed that the crystalline thin films were metallic, ρ=(5–20)×10-6 Ω m. The amorphous thin films had resistivity values five orders of magnitude larger, ρ>3 Ω m. According to scanning electron microscopy (SEM) and atomic force microscopy (AFM), the films were homogeneous and dense. The surface roughness increased on crystallisation. X-Ray photoelectron spectroscopy (XPS) and magnetic susceptibility measurements were employed in order to further characterize the amorphous and crystalline thin films.


References

  1. N. Q. Minh, J. Am. Ceram. Soc., 1993, 76, 563 CAS.
  2. Properties and Applications of Perovskite-type Oxides, ed. L. G. Tejuca and J. L. G. Fierro, Marcel Dekker, New York, 1992, ch. 10–17 Search PubMed.
  3. U. König, O. Blum, R. Christ and I. Reeh, J. Phys. Chem., 1993, 97, 488.
  4. R. N. Singh, L. Bahadur, J. P. Pandey and S. P. Singh, J. Appl. Electrochem., 1994, 24, 149 CAS.
  5. A. Mackor, T. P. M. Koster, J. G. Kraaijkamp, J. Gerretsen and J. P. G. M. van Eijk, Proc. 2nd Int. Symp. Solid Oxide Fuel Cells, The Electrochemical Society, Pennington, NJ, 1991, 463 Search PubMed.
  6. J. Mizusaki, S. Yamauchi, K. Fueki and A. Ishikawa, Solid State Ionics, 1984, 12, 119 CrossRef CAS.
  7. K. M. Satyalakshmi, R. M. Mallya, K. V. Ramanathan, X. D. Wu, B. Brainard, D. C. Gautier, N. Y. Vasanthacharya and M. S. Hedge, Appl. Phys. Lett., 1993, 62, 1233 CrossRef CAS.
  8. M. Sagoi, T. Kinno, T. Hushimoto, J. Yoshida and K. Mizushima, Appl. Phys. Lett., 1993, 62, 1833 CrossRef CAS.
  9. H. Ichinose, M. Nagano, H. Katsuki and H. J. Takagi, J. Mater. Sci., 1994, 29, 5115 CAS.
  10. H. Ichinose, Y. Shiwa and M. Nagano, Jpn. J. Appl. Phys., 1994, 33, 5903 CrossRef CAS.
  11. H. Ichinose, Y. Shiwa and M. Nagano, Jpn. J. Appl. Phys., 1994, 33, 5907 CrossRef CAS.
  12. C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu and J. M. Wu, Appl. Phys. Lett., 1995, 66, 2643 CrossRef CAS.
  13. A. Li, C. Ge and P. Lü, Appl. Phys. Lett., 1996, 68, 1347 CrossRef CAS.
  14. H. Obayashi and T. Kudo, Jpn. J. Appl. Phys., 1975, 14, 330 CAS.
  15. H. Fjellvåg, O. H. Hansteen, B. Gilbu, A. Olafsen, N. Sakai and H. Seim, Thermochim. Acta, 1995, 256, 75 CrossRef CAS.
  16. S. Rakshit and P. S. Gopalakrishnan, J. Solid State Chem., 1994, 110, 28 CrossRef CAS.
  17. M. Crespin, P. Levitz and L. J. Gatineau, J. Chem. Soc., Faraday Trans. 2, 1983, 79, 1181 RSC.
  18. L. Niinistö, M. Ritala and M. Leskelä, J. Eng. Mater., in press Search PubMed.
  19. T. Suntola, A. Pakkala and S. Lindfors, US Pat., 4 389 973, 1983 Search PubMed.
  20. M. Leskelä and L. Niinistö, in Atomic Layer Epitaxy, ed. T. Suntola and M. Simpson, Blackie and Son Ltd., Glasgow, 1990, p. 1 Search PubMed.
  21. T. Suntola, in Handbook of Crystal Growth, ed. D. T. J. Hurle, Elsevier, Amsterdam, 1994, vol. 3, p. 601 Search PubMed.
  22. H. Mölsä and L. Niinistö, Mater. Res. Soc. Symp. Proc., 1994, 335, 341 CAS.
  23. JCPDS file 33-710; H. Wustenberg, Hahn Inst. für Kristallogr., Technische Hochschule Aachen, Germany.
  24. H. Seim, M. Nieminen, H. Fjellvåg and L. Niinistö, unpublished work.
  25. T. Moriga, O. Usaka, T. Imamura, I. Nakabayashi, I. Matsubara, T. Kinouchi, S. Kikkawa and F. Kanamaru, Bull. Chem. Soc. Jpn., 1994, 67, 687 CAS.
  26. J. Choisnet, N. Abadzhieva, P. Stefanov, D. Klissurski, J. M. Bassat, V. Rives and L. Minchev, J. Chem. Soc., Faraday Trans., 1994, 90, 1987 RSC.
  27. J. L. G. Fierro and G. Tejuca, Appl. Surf. Sci., 1987, 27, 453 CrossRef CAS.
  28. L. G. Tejuka and J. L. G. Fierro, Thermochim. Acta, 1989, 147, 361 CrossRef.
  29. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, in Handbook of X-Ray Photoelectron Spectroscopy, ed. J. Chastain and R. C. King, Eden Prairie, Minnesota, 1995, p. 261 Search PubMed.
  30. P. Burroughs, A. Hamnett, A. F. Orchard and G. Thornton, J. Chem. Soc., Dalton Trans., 1976, 1686 RSC.
  31. X. Q. Xu, J. L. Peng, Z. Y. Li, H. L. Ju and R. L. Greene, Phys. Rev. B, 1993, 48, 1112 CrossRef CAS.
  32. K. Sreedhar, J. M. Honig, M. Darwin, M. McElfresh, P. M. Shand, J. Xu, B. C. Crooker and J. Spalek, Phys. Rev. B, 1992, 46, 6382 CrossRef CAS.
  33. Z. Zhang and M. Greenblatt, J. Solid State Chem., 1995, 117, 236 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.